論文の概要: Introducing Axlerod: An LLM-based Chatbot for Assisting Independent Insurance Agents
- arxiv url: http://arxiv.org/abs/2601.09715v1
- Date: Wed, 24 Dec 2025 15:31:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-25 16:54:51.692137
- Title: Introducing Axlerod: An LLM-based Chatbot for Assisting Independent Insurance Agents
- Title(参考訳): 独立保険代理店支援のためのLCM型チャットボット「Axlerod」の紹介
- Authors: Adam Bradley, John Hastings, Khandaker Mamun Ahmed,
- Abstract要約: 保険業界は人工知能(AI)技術の導入を通じてパラダイムシフトを行っている。
本稿では,独立保険業者の業務効率向上を目的としたAIを活用した対話インタフェースであるAxlerodの設計,実装,実証評価について述べる。
- 参考スコア(独自算出の注目度): 0.20999222360659608
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The insurance industry is undergoing a paradigm shift through the adoption of artificial intelligence (AI) technologies, particularly in the realm of intelligent conversational agents. Chatbots have evolved into sophisticated AI-driven systems capable of automating complex workflows, including policy recommendation and claims triage, while simultaneously enabling dynamic, context-aware user engagement. This paper presents the design, implementation, and empirical evaluation of Axlerod, an AI-powered conversational interface designed to improve the operational efficiency of independent insurance agents. Leveraging natural language processing (NLP), retrieval-augmented generation (RAG), and domain-specific knowledge integration, Axlerod demonstrates robust capabilities in parsing user intent, accessing structured policy databases, and delivering real-time, contextually relevant responses. Experimental results underscore Axlerod's effectiveness, achieving an overall accuracy of 93.18% in policy retrieval tasks while reducing the average search time by 2.42 seconds. This work contributes to the growing body of research on enterprise-grade AI applications in insurtech, with a particular focus on agent-assistive rather than consumer-facing architectures.
- Abstract(参考訳): 保険業界は、人工知能(AI)技術の導入、特にインテリジェントな会話エージェントの領域におけるパラダイムシフトを実行している。
チャットボットは、ポリシーレコメンデーションやクレームトリアージを含む複雑なワークフローを自動化すると同時に、動的でコンテキスト対応のユーザエンゲージメントを可能にする、高度なAI駆動システムへと進化してきた。
本稿では,独立保険業者の業務効率向上を目的としたAIを活用した対話インタフェースであるAxlerodの設計,実装,実証評価について述べる。
自然言語処理(NLP)、検索拡張生成(RAG)、ドメイン固有の知識統合を活用して、Axlerodは、ユーザの意図を解析し、構造化されたポリシーデータベースにアクセスし、リアルタイムでコンテキストに関連のある応答を提供する、堅牢な機能を示している。
実験の結果、Axlerodの有効性を裏付け、ポリシー検索タスクの全体的な精度は93.18%であり、平均検索時間を2.42秒短縮した。
この研究は、インシュルテックにおけるエンタープライズグレードのAIアプリケーションに関する研究の活発化に寄与し、特に消費者向けアーキテクチャよりもエージェントアシストに重点を置いている。
関連論文リスト
- SelfAI: Building a Self-Training AI System with LLM Agents [79.10991818561907]
SelfAIは、高レベルの研究目的を標準化された実験構成に変換するためのUser Agentを組み合わせた、一般的なマルチエージェントプラットフォームである。
実験マネージャは、連続的なフィードバックのための構造化知識ベースを維持しながら、異種ハードウェアをまたいだ並列かつフォールトトレラントなトレーニングを編成する。
回帰、コンピュータビジョン、科学計算、医用画像、薬物発見ベンチマークなどを通じて、SelfAIは一貫して高いパフォーマンスを達成し、冗長な試行を減らしている。
論文 参考訳(メタデータ) (2025-11-29T09:18:39Z) - LoCoBench-Agent: An Interactive Benchmark for LLM Agents in Long-Context Software Engineering [90.84806758077536]
textbfLoCoBench-Agentは,大規模言語モデル(LLM)エージェントを現実的,長期的ソフトウェア工学で評価するための総合的な評価フレームワークである。
我々のフレームワークは、LoCoBenchの8000のシナリオを対話型エージェント環境に拡張し、マルチターン会話の体系的評価を可能にする。
我々のフレームワークは,8つの特殊なツール(ファイル操作,検索,コード解析)をエージェントに提供し,それを10Kから1Mトークンの範囲で評価する。
論文 参考訳(メタデータ) (2025-11-17T23:57:24Z) - Creative Adversarial Testing (CAT): A Novel Framework for Evaluating Goal-Oriented Agentic AI Systems [0.0]
CAT(Creative Adversarial Testing)は、エージェントAIタスクとシステムの意図する目的との間の複雑な関係をキャプチャして分析するために設計された、新しいアプローチである。
我々は、Alexa+オーディオサービスに倣った合成相互作用データを用いて、CATフレームワークを広範囲にシミュレーションすることで検証する。
我々の結果は、CATフレームワークが目標とタスクのアライメントに関する前例のない洞察を提供し、エージェントAIシステムのより効率的な最適化と開発を可能にしていることを実証している。
論文 参考訳(メタデータ) (2025-09-26T23:52:20Z) - Securing AI Agents: Implementing Role-Based Access Control for Industrial Applications [0.0]
産業環境では、AIエージェントは意思決定、予測保守、プロセス最適化を強化することでオペレーションを変革している。
これらの進歩にもかかわらず、AIエージェントは、迅速なインジェクション攻撃を含む、セキュリティ上の脅威に弱いままである。
本稿では,RBAC(Role-Based Access Control)をAIエージェントに統合し,堅牢なセキュリティガードレールを提供するフレームワークを提案する。
論文 参考訳(メタデータ) (2025-09-14T20:58:08Z) - Co-Investigator AI: The Rise of Agentic AI for Smarter, Trustworthy AML Compliance Narratives [2.7295959384567356]
Co-Investigator AIは、SAR(Suspicious Activity Reports)の作成に最適化されたエージェントフレームワークであり、従来の方法よりも大幅に高速で精度が高い。
我々は、SARの草案作成を効率化し、物語を規制上の期待と一致させ、コンプライアンスチームが高次の分析作業に集中できるようにする能力を示します。
論文 参考訳(メタデータ) (2025-09-10T08:16:04Z) - Towards Pervasive Distributed Agentic Generative AI -- A State of The Art [0.0]
知的エージェントとLarge Language Models(LLM)の急速な進歩は、広範にわたるコンピューティング分野を変革している。
この調査では、LLMエージェントのアーキテクチャコンポーネントの概要と、さまざまなシナリオにおけるデプロイメントと評価について概説する。
リソース制約のあるデバイス上でのローカルおよび分散実行を含む、最先端のエージェントデプロイメント戦略とアプリケーションを強調している。
論文 参考訳(メタデータ) (2025-06-16T10:15:06Z) - AutoMind: Adaptive Knowledgeable Agent for Automated Data Science [70.33796196103499]
LLM(Large Language Model)エージェントは、現実世界のデータサイエンス問題に対処する大きな可能性を示している。
既存のフレームワークは、厳格で、事前定義された、柔軟性のないコーディング戦略に依存している。
適応的で知識のあるLLMエージェントフレームワークであるAutoMindを紹介する。
論文 参考訳(メタデータ) (2025-06-12T17:59:32Z) - A Desideratum for Conversational Agents: Capabilities, Challenges, and Future Directions [51.96890647837277]
大規模言語モデル(LLM)は、従来の対話システムから、自律的な行動、文脈認識、ユーザとのマルチターンインタラクションが可能な高度なエージェントへと、会話AIを推進してきた。
本調査では,人間レベルの知性にアプローチするよりスケーラブルなシステムにおいて,何が達成されたのか,どのような課題が持続するのか,何を行う必要があるのか,といった,次世代の会話エージェントのデシラトゥムを提示する。
論文 参考訳(メタデータ) (2025-04-07T21:01:25Z) - Interactive Agents to Overcome Ambiguity in Software Engineering [61.40183840499932]
AIエージェントは、あいまいで不明確なユーザー指示に基づいて、タスクを自動化するためにますますデプロイされている。
不安定な仮定をし、明確な質問をしないことは、最適以下の結果につながる可能性がある。
対話型コード生成設定において,LLMエージェントが不明瞭な命令を処理する能力について,プロプライエタリモデルとオープンウェイトモデルを評価して検討する。
論文 参考訳(メタデータ) (2025-02-18T17:12:26Z) - Watch-And-Help: A Challenge for Social Perception and Human-AI
Collaboration [116.28433607265573]
我々は、AIエージェントでソーシャルインテリジェンスをテストするための課題であるWatch-And-Help(WAH)を紹介する。
WAHでは、AIエージェントは、人間のようなエージェントが複雑な家庭用タスクを効率的に実行するのを助ける必要がある。
マルチエージェントの家庭環境であるVirtualHome-Socialを構築し、計画と学習ベースのベースラインを含むベンチマークを提供する。
論文 参考訳(メタデータ) (2020-10-19T21:48:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。