論文の概要: PhysRVG: Physics-Aware Unified Reinforcement Learning for Video Generative Models
- arxiv url: http://arxiv.org/abs/2601.11087v1
- Date: Fri, 16 Jan 2026 08:40:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-19 20:21:50.411562
- Title: PhysRVG: Physics-Aware Unified Reinforcement Learning for Video Generative Models
- Title(参考訳): PhysRVG:ビデオ生成モデルのための物理対応統一強化学習
- Authors: Qiyuan Zhang, Biao Gong, Shuai Tan, Zheng Zhang, Yujun Shen, Xing Zhu, Yuyuan Li, Kelu Yao, Chunhua Shen, Changqing Zou,
- Abstract要約: 物理原理は現実的な視覚シミュレーションには基本的だが、トランスフォーマーベースのビデオ生成において重要な監視対象である。
本研究では,物理衝突ルールを高次元空間に直接適用した映像生成モデルのための物理認識強化学習パラダイムを提案する。
このパラダイムを、MDcycle(Mimicry-Discovery Cycle)と呼ばれる統合フレームワークに拡張することで、大幅な微調整を可能にします。
- 参考スコア(独自算出の注目度): 100.65199317765608
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physical principles are fundamental to realistic visual simulation, but remain a significant oversight in transformer-based video generation. This gap highlights a critical limitation in rendering rigid body motion, a core tenet of classical mechanics. While computer graphics and physics-based simulators can easily model such collisions using Newton formulas, modern pretrain-finetune paradigms discard the concept of object rigidity during pixel-level global denoising. Even perfectly correct mathematical constraints are treated as suboptimal solutions (i.e., conditions) during model optimization in post-training, fundamentally limiting the physical realism of generated videos. Motivated by these considerations, we introduce, for the first time, a physics-aware reinforcement learning paradigm for video generation models that enforces physical collision rules directly in high-dimensional spaces, ensuring the physics knowledge is strictly applied rather than treated as conditions. Subsequently, we extend this paradigm to a unified framework, termed Mimicry-Discovery Cycle (MDcycle), which allows substantial fine-tuning while fully preserving the model's ability to leverage physics-grounded feedback. To validate our approach, we construct new benchmark PhysRVGBench and perform extensive qualitative and quantitative experiments to thoroughly assess its effectiveness.
- Abstract(参考訳): 物理原理は現実的な視覚シミュレーションには基本的だが、トランスフォーマーベースのビデオ生成において重要な監視対象である。
このギャップは、古典力学のコアテレットである剛体運動をレンダリングする際の限界を浮き彫りにする。
コンピュータグラフィックスと物理ベースのシミュレータはニュートンの公式を使って容易にそのような衝突をモデル化できるが、現代のプレトレイン・ファネチューンパラダイムはピクセルレベルのグローバルデノゲーションにおいてオブジェクトの剛性の概念を捨てる。
完全に正しい数学的制約でさえ、後学習におけるモデル最適化の際の最適解(すなわち条件)として扱われ、生成されたビデオの物理的リアリズムを根本的に制限する。
これらの考察により,高次元空間で直接衝突ルールを強制し,物理知識が条件として扱われるよりも厳密に適用されることを保証する,映像生成モデルのための物理認識強化学習パラダイムを初めて導入した。
その後、このパラダイムを統一されたフレームワークであるMimicry-Discovery Cycle (MDcycle) に拡張し、物理基底フィードバックを利用するモデルの能力を完全に保ちながら、かなりの微調整を可能にする。
提案手法の有効性を検証するため,新しいベンチマークPhysRVGBenchを構築した。
関連論文リスト
- Inference-time Physics Alignment of Video Generative Models with Latent World Models [28.62446995107834]
我々はWMRewardを導入し、推論時間アライメント問題としてビデオ生成の物理的妥当性を改善する。
特に、潜在世界モデルに先立って強い物理を応用し、複数の候補の軌道を探索し、操舵する報奨として活用する。
提案手法は,画像条件,マルチフレーム条件,テキスト条件による生成設定の物理的妥当性を大幅に向上させる。
論文 参考訳(メタデータ) (2026-01-15T16:18:00Z) - ProPhy: Progressive Physical Alignment for Dynamic World Simulation [55.456455952212416]
ProPhyは、明示的な物理認識条件付けと異方性生成を可能にするプログレッシブ物理アライメントフレームワークである。
ProPhyは既存の最先端手法よりもリアルでダイナミックで物理的に一貫性のある結果が得られることを示す。
論文 参考訳(メタデータ) (2025-12-05T09:39:26Z) - PhysCorr: Dual-Reward DPO for Physics-Constrained Text-to-Video Generation with Automated Preference Selection [10.498184571108995]
本稿では,ビデオ生成における物理一貫性をモデリング,評価,最適化するための統合フレームワークであるPhysCorrを提案する。
具体的には、物体内安定性と物体間相互作用の両方を定量化する最初の2次元報酬モデルである物理RMを紹介する。
我々のアプローチは、モデルに依存しないスケーラブルで、幅広いビデオ拡散とトランスフォーマーベースのバックボーンへのシームレスな統合を可能にする。
論文 参考訳(メタデータ) (2025-11-06T02:40:57Z) - LikePhys: Evaluating Intuitive Physics Understanding in Video Diffusion Models via Likelihood Preference [57.086932851733145]
ビデオ拡散モデルにおける直感的な物理を評価するトレーニング不要な方法であるLikePhysを紹介した。
現在のビデオ拡散モデルにおける直観的物理理解のベンチマークを行う。
経験的結果は、現在のモデルが複雑でカオス的な力学に苦しむにもかかわらず、モデルキャパシティと推論設定スケールとしての物理理解の改善傾向が明らかであることを示している。
論文 参考訳(メタデータ) (2025-10-13T15:19:07Z) - PhysHMR: Learning Humanoid Control Policies from Vision for Physically Plausible Human Motion Reconstruction [52.44375492811009]
物理学に基づくシミュレーターにおいて,ヒューマノイド制御のための視覚行動ポリシーを学習する統合フレームワークであるPhysHMRを提案する。
我々のアプローチの重要な要素はピクセル・アズ・レイ戦略であり、2次元のキーポイントを3次元空間に上げ、それらを大域空間に変換する。
PhysHMRは多種多様なシナリオにまたがって高忠実で物理的に妥当な動きを生じさせ、視覚的精度と身体的リアリズムの両方において以前のアプローチより優れている。
論文 参考訳(メタデータ) (2025-10-02T21:01:11Z) - Physics-Grounded Motion Forecasting via Equation Discovery for Trajectory-Guided Image-to-Video Generation [54.42523027597904]
物理グラウンド映像予測のためのシンボル回帰と軌跡誘導映像(I2V)モデルを統合する新しいフレームワークを提案する。
提案手法は,入力ビデオから運動軌跡を抽出し,検索に基づく事前学習機構を用いて記号回帰を向上し,運動方程式を発見し,物理的に正確な将来の軌跡を予測する。
論文 参考訳(メタデータ) (2025-07-09T13:28:42Z) - PhyMAGIC: Physical Motion-Aware Generative Inference with Confidence-guided LLM [17.554471769834453]
一つの画像から物理的に一貫した動きを生成するトレーニング不要のフレームワークであるPhyMAGICを提案する。
PhyMAGICは、事前訓練された画像間拡散モデル、LDMによる信頼誘導推論、微分可能な物理シミュレータを統合する。
総合的な実験により、PhyMAGICは最先端のビデオジェネレータや物理対応のベースラインより優れていることが示された。
論文 参考訳(メタデータ) (2025-05-22T09:40:34Z) - PhysMotion: Physics-Grounded Dynamics From a Single Image [24.096925413047217]
本稿では、物理シミュレーションを利用した新しいフレームワークであるPhysMotionを紹介し、一つの画像と入力条件から生成された中間3次元表現をガイドする。
我々のアプローチは、従来のデータ駆動生成モデルの限界に対処し、より一貫した物理的に妥当な動きをもたらす。
論文 参考訳(メタデータ) (2024-11-26T07:59:11Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。