論文の概要: R$^2$PO: Decoupling Training Trajectories from Inference Responses for LLM Reasoning
- arxiv url: http://arxiv.org/abs/2601.11960v2
- Date: Fri, 23 Jan 2026 04:14:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-26 14:27:27.28919
- Title: R$^2$PO: Decoupling Training Trajectories from Inference Responses for LLM Reasoning
- Title(参考訳): R$^2$PO: LLM推論のための推論応答からの訓練軌道の分離
- Authors: Jingchu Wang, Bingbing Xu, Yige Yuan, Bin Xie, Xiaoqian Sun, Huawei Shen,
- Abstract要約: R$2$POは、トレーニングトラジェクトリを推論応答から切り離すためのポリシーの上に、軽量なResidual Rollout-Headを導入している。
その結果,MATH-500では平均精度が3.4%,APPSでは1.3%向上した。
- 参考スコア(独自算出の注目度): 38.722039062040096
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning has become a central paradigm for improving LLM reasoning. However, existing methods use a single policy to produce both inference responses and training optimization trajectories. The objective conflict between generating stable inference responses and diverse training trajectories leads to insufficient exploration, which harms reasoning capability. In this paper, to address the problem, we propose R$^2$PO (Residual Rollout Policy Optimization), which introduces a lightweight Residual Rollout-Head atop the policy to decouple training trajectories from inference responses, enabling controlled trajectory diversification during training while keeping inference generation stable. Experiments across multiple benchmarks show that our method consistently outperforms baselines, achieving average accuracy gains of 3.4% on MATH-500 and 1.3% on APPS, while also reducing formatting errors and mitigating length bias for stable optimization. Our code is publicly available at https://github.com/RRPO-ARR/Code.
- Abstract(参考訳): 強化学習はLLM推論を改善するための中心的なパラダイムとなっている。
しかし、既存の手法では、推論応答とトレーニング最適化軌跡の両方を生成するために単一のポリシーを使用している。
安定した推論応答の生成と多様な訓練軌道との客観的な衝突は、推論能力に悪影響を及ぼすが不十分な探索につながる。
本稿では,提案するR$^2$PO(Residual Rollout Policy Optimization)を提案する。このR$^2$PO(Residual Rollout Policy Optimization)は,トレーニングトラジェクトリを推論応答から切り離すための軽量なResidual Rollout-Headを導入し,推論生成を安定に保ちながら,トレーニング中に制御されたトラジェクトリの多様化を可能にする。
複数のベンチマークで実験した結果,MATH-500では平均精度が3.4%,APPSでは1.3%向上し,フォーマット誤差を低減し,安定な最適化のために長さバイアスを軽減した。
私たちのコードはhttps://github.com/RRPO-ARR/Codeで公開されています。
関連論文リスト
- Human-in-the-loop Online Rejection Sampling for Robotic Manipulation [55.99788088622936]
Hi-ORSは、オンライン微調整中に負の報酬を得たサンプルをフィルタリングすることで、値推定を安定化する。
Hi-ORSは、わずか1.5時間でコンタクトリッチな操作をマスターするためのpiベースのポリシーを微調整する。
論文 参考訳(メタデータ) (2025-10-30T11:53:08Z) - Mind the Gap: Data Rewriting for Stable Off-Policy Supervised Fine-Tuning [33.899779762210976]
大規模言語モデルの教師付き微調整(SFT)は、非政治的な学習問題と見なすことができる。
既存の方法では、ギャップを積極的に減らすのではなく、パッシブに更新するKLペナルティやクリッピングによってこの問題を軽減する。
本稿では,トレーニング前の政策ギャップを積極的に縮小する,シンプルで効果的なデータ書き換えフレームワークを提案する。
論文 参考訳(メタデータ) (2025-09-18T17:02:30Z) - REX-RAG: Reasoning Exploration with Policy Correction in Retrieval-Augmented Generation [35.0649927279081]
強化学習(RL)は、大規模言語モデル(LLM)が複雑な推論タスクを実行できるための強力なパラダイムとして浮上している。
本稿では、厳格な政策学習を維持しつつ、代替推論経路を探求するフレームワークであるREX-RAGを提案する。
その結果,REX-RAG は Qwen2.5-3B では5.1%, Qwen2.5-7B では3.6% であることがわかった。
論文 参考訳(メタデータ) (2025-08-11T16:25:25Z) - Accelerating RL for LLM Reasoning with Optimal Advantage Regression [52.0792918455501]
本稿では,最適優位関数を直接近似する新しい2段階ポリシー最適化フレームワークを提案する。
A$*-POは、幅広い数学的推論ベンチマークで競合性能を達成する。
PPO、GRPO、REBELと比較して、トレーニング時間を最大2$times$、ピークメモリ使用率を30%以上削減する。
論文 参考訳(メタデータ) (2025-05-27T03:58:50Z) - Trajectory Bellman Residual Minimization: A Simple Value-Based Method for LLM Reasoning [55.33984461046492]
現在、政策に基づく手法が大規模言語モデル(LLM)推論のための強化学習パイプラインを支配している。
本稿では,このアイデアを LLM に自然に適応させるアルゴリズムである Trajectory Bellman Residual Minimization (TBRM) を紹介する。
我々は、軌道の軌道変更-測度分析の改善により、任意のオフ政治から、最適に近いKL正規化政策への収束を証明した。
論文 参考訳(メタデータ) (2025-05-21T09:41:53Z) - Not All Rollouts are Useful: Down-Sampling Rollouts in LLM Reinforcement Learning [55.15106182268834]
検証可能な報奨付き強化学習(RLVR)が,大規模言語モデルにおける推論能力向上のための主要なアプローチとして登場した。
ロールアウト生成は恥ずかしく並列であり、メモリライトであるのに対して、ポリシー更新は通信量が多く、メモリ集約的である。
PODS(Policy Optimization with Down-Sampling)を導入し、戦略的に選択されたロールアウトサブセットでのみトレーニングすることで、ポリシー更新からロールアウト生成を分離する。
論文 参考訳(メタデータ) (2025-04-18T17:49:55Z) - Zeroth-Order Policy Gradient for Reinforcement Learning from Human Feedback without Reward Inference [15.038210624870656]
リワード推論は、ヒューマンフィードバックパイプラインからの強化学習における重要な中間ステップである。
本稿では,帯域幅を超える一般RL問題と決定論的MDP帯域幅,Bradley-Terryモデルを超える一般選好モデルについて,報酬推論のない2つのRLHFアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-09-25T22:20:11Z) - Statistically Efficient Variance Reduction with Double Policy Estimation
for Off-Policy Evaluation in Sequence-Modeled Reinforcement Learning [53.97273491846883]
本稿では、オフラインシーケンスモデリングとオフライン強化学習をダブルポリシー推定と組み合わせたRLアルゴリズムDPEを提案する。
D4RLベンチマークを用いて,OpenAI Gymの複数のタスクで本手法を検証した。
論文 参考訳(メタデータ) (2023-08-28T20:46:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。