論文の概要: Optimal Power Allocation and Sub-Optimal Channel Assignment for Downlink NOMA Systems Using Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2601.12242v1
- Date: Sun, 18 Jan 2026 03:37:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-21 22:47:22.52045
- Title: Optimal Power Allocation and Sub-Optimal Channel Assignment for Downlink NOMA Systems Using Deep Reinforcement Learning
- Title(参考訳): 深部強化学習を用いたダウンリンクNOMAシステムの最適電力配分と準最適チャネル割り当て
- Authors: WooSeok Kim, Jeonghoon Lee, Sangho Kim, Taesun An, WonMin Lee, Dowon Kim, Kyungseop Shin,
- Abstract要約: 本研究では,リプレイメモリをオン・ポリシー・アルゴリズムで組み込んだ深層強化学習フレームワークを提案し,ネットワークリソースをNOMAシステムに割り当てて学習を一般化する。
また,学習率,バッチサイズ,モデルの種類,状態の特徴数の変化の影響を評価するため,広範囲なシミュレーションを行った。
- 参考スコア(独自算出の注目度): 4.990836521124758
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, Non-Orthogonal Multiple Access (NOMA) system has emerged as a promising candidate for multiple access frameworks due to the evolution of deep machine learning, trying to incorporate deep machine learning into the NOMA system. The main motivation for such active studies is the growing need to optimize the utilization of network resources as the expansion of the internet of things (IoT) caused a scarcity of network resources. The NOMA addresses this need by power multiplexing, allowing multiple users to access the network simultaneously. Nevertheless, the NOMA system has few limitations. Several works have proposed to mitigate this, including the optimization of power allocation known as joint resource allocation(JRA) method, and integration of the JRA method and deep reinforcement learning (JRA-DRL). Despite this, the channel assignment problem remains unclear and requires further investigation. In this paper, we propose a deep reinforcement learning framework incorporating replay memory with an on-policy algorithm, allocating network resources in a NOMA system to generalize the learning. Also, we provide extensive simulations to evaluate the effects of varying the learning rate, batch size, type of model, and the number of features in the state.
- Abstract(参考訳): 近年,深層機械学習の進化により,非直交多重アクセス(Noma)システムが複数のアクセスフレームワークの候補として浮上し,深層機械学習をNOMAシステムに組み込もうとしている。
このような活発な研究の大きな動機は、モノのインターネット(IoT)の拡張がネットワークリソースの不足を引き起こしているため、ネットワークリソースの利用を最適化する必要性が高まっていることである。
NOMAはパワー多重化によってこのニーズに対処し、複数のユーザが同時にネットワークにアクセスできるようにする。
それでも、NOMAシステムには制限がほとんどない。
共同資源割当法(JRA)の最適化,JRA法と深部強化学習(JRA-DRL)の統合など,これを緩和する作業がいくつか提案されている。
しかし、チャネル割り当ての問題はまだ不明であり、さらなる調査が必要である。
本稿では,リプレイメモリをオン・ポリシー・アルゴリズムに組み込んだ深層強化学習フレームワークを提案し,学習を一般化するためのネットワークリソースをNOMAシステムに割り当てる。
また,学習率,バッチサイズ,モデルの種類,状態の特徴数の変化の影響を評価するため,広範囲なシミュレーションを行った。
関連論文リスト
- Meta Reinforcement Learning Approach for Adaptive Resource Optimization in O-RAN [6.326120268549892]
Open Radio Access Network (O-RAN) は、前例のない効率性と適応性を持つ現代のネットワークの変動要求に対処する。
本稿では,モデルに依存しないメタラーニング(MAML)にインスパイアされたメタ深層強化学習(Meta-DRL)戦略を提案する。
論文 参考訳(メタデータ) (2024-09-30T23:04:30Z) - Joint Admission Control and Resource Allocation of Virtual Network Embedding via Hierarchical Deep Reinforcement Learning [69.00997996453842]
本稿では,仮想ネットワークの埋め込みにおいて,入出力制御と資源配分を併用して学習する深層強化学習手法を提案する。
HRL-ACRAは,受入率と長期平均収益の両面で,最先端のベースラインを上回っていることを示す。
論文 参考訳(メタデータ) (2024-06-25T07:42:30Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
本稿では,Vehicular Edge Computingにおける共同DNNパーティショニング,タスクオフロード,リソース割り当ての問題を定式化する。
我々の目標は、時間とともにシステムの安定性を保証しながら、DNNベースのタスク完了時間を最小化することである。
拡散モデルの革新的利用を取り入れたマルチエージェント拡散に基づく深層強化学習(MAD2RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-11T06:31:03Z) - Intelligent Hybrid Resource Allocation in MEC-assisted RAN Slicing Network [72.2456220035229]
我々は,協調型MEC支援RANスライシングシステムにおける異種サービス要求に対するSSRの最大化を目指す。
最適ハイブリッドRAポリシーをインテリジェントに学習するためのRGRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-02T01:36:13Z) - Hierarchical Multi-Agent DRL-Based Framework for Joint Multi-RAT
Assignment and Dynamic Resource Allocation in Next-Generation HetNets [21.637440368520487]
本稿では,次世代無線ネットワーク(HetNets)における共同最適無線アクセス技術(RATs)の割り当てと電力割り当てによるコストアウェアダウンリンク総和率の問題について考察する。
本稿では,DeepRAT(DeepRAT)と呼ばれる階層型多エージェント深層強化学習(DRL)フレームワークを提案する。
特に、DeepRATフレームワークは、問題を2つの主要なステージに分解する: 単一エージェントのDeep Q Networkアルゴリズムを実装するRATs-EDs割り当てステージと、マルチエージェントのDeep Deterministic Policy Gradientを利用するパワー割り当てステージである。
論文 参考訳(メタデータ) (2022-02-28T09:49:44Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
エネルギー収穫(EH)、認知無線(CR)、非直交多重アクセス(NOMA)の組み合わせはエネルギー効率を向上させるための有望な解決策である。
本稿では,決定論的CR-NOMA IoTシステムにおけるスペクトル,エネルギー,時間資源管理について検討する。
論文 参考訳(メタデータ) (2021-09-17T08:55:48Z) - A Heuristically Assisted Deep Reinforcement Learning Approach for
Network Slice Placement [0.7885276250519428]
本稿では,Deep Reinforcement Learning(DRL)に基づくハイブリッド配置ソリューションと,Power of Two Choices原則に基づく専用最適化を提案する。
提案したHuristically-Assisted DRL (HA-DRL) は,他の最先端手法と比較して学習プロセスの高速化と資源利用の促進を可能にする。
論文 参考訳(メタデータ) (2021-05-14T10:04:17Z) - DeepSlicing: Deep Reinforcement Learning Assisted Resource Allocation
for Network Slicing [20.723527476555574]
ネットワークスライシングにより、同じ物理インフラストラクチャ上で複数の仮想ネットワークが動作し、5G以降のさまざまなユースケースをサポートすることができる。
これらのユースケースには、通信や計算、レイテンシやスループットといったさまざまなパフォーマンス指標など、非常に多様なネットワークリソース要求があります。
乗算器の交互方向法(ADMM)と深部強化学習(DRL)を統合したDeepSlicingを提案する。
論文 参考訳(メタデータ) (2020-08-17T20:52:19Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
本稿では,自由空間光学(FSO)通信におけるチャネルフェージング効果の緩和のための資源配分の一般的な問題について検討する。
本フレームワークでは,FSO資源割り当て問題を解決する2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-27T17:38:51Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
我々は,近年のディープラーニング(DL)の進歩を反映した,新しいディープ・コラボレーティブなNOMAスキームを開発する。
我々は,システム全体を包括的に最適化できるように,新しいハイブリッドカスケードディープニューラルネットワーク(DNN)アーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-07-27T12:38:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。