論文の概要: Combating Noisy Labels through Fostering Self- and Neighbor-Consistency
- arxiv url: http://arxiv.org/abs/2601.12795v1
- Date: Mon, 19 Jan 2026 07:55:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-21 22:47:22.794688
- Title: Combating Noisy Labels through Fostering Self- and Neighbor-Consistency
- Title(参考訳): 自己と近隣の一貫性を生かした騒音ラベルの圧縮
- Authors: Zeren Sun, Yazhou Yao, Tongliang Liu, Zechao Li, Fumin Shen, Jinhui Tang,
- Abstract要約: ラベルノイズは様々な現実世界のシナリオで広まり、教師付きディープラーニングの課題を提起する。
我々は、Jo-SNC(textbfSelf- と textbfNeighbor-textbfConsistency に基づくサンプル選択とモデル正規化)というノイズロバスト手法を提案する。
我々は、クラスごとの選択閾値を調整するための自己適応型データ駆動しきい値設定方式を設計する。
- 参考スコア(独自算出の注目度): 120.4394402099635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Label noise is pervasive in various real-world scenarios, posing challenges in supervised deep learning. Deep networks are vulnerable to such label-corrupted samples due to the memorization effect. One major stream of previous methods concentrates on identifying clean data for training. However, these methods often neglect imbalances in label noise across different mini-batches and devote insufficient attention to out-of-distribution noisy data. To this end, we propose a noise-robust method named Jo-SNC (\textbf{Jo}int sample selection and model regularization based on \textbf{S}elf- and \textbf{N}eighbor-\textbf{C}onsistency). Specifically, we propose to employ the Jensen-Shannon divergence to measure the ``likelihood'' of a sample being clean or out-of-distribution. This process factors in the nearest neighbors of each sample to reinforce the reliability of clean sample identification. We design a self-adaptive, data-driven thresholding scheme to adjust per-class selection thresholds. While clean samples undergo conventional training, detected in-distribution and out-of-distribution noisy samples are trained following partial label learning and negative learning, respectively. Finally, we advance the model performance further by proposing a triplet consistency regularization that promotes self-prediction consistency, neighbor-prediction consistency, and feature consistency. Extensive experiments on various benchmark datasets and comprehensive ablation studies demonstrate the effectiveness and superiority of our approach over existing state-of-the-art methods.
- Abstract(参考訳): ラベルノイズは様々な現実世界のシナリオで広まり、教師付きディープラーニングの課題を提起する。
ディープネットワークは、記憶効果のためにラベルが破損したサンプルに対して脆弱である。
以前の方法の主なストリームは、トレーニング用のクリーンなデータを特定することに集中している。
しかし、これらの手法は、異なるミニバッチ間のラベルノイズの不均衡を無視し、配布外ノイズデータに十分な注意を払っていることが多い。
本稿では,Jo-SNC (\textbf{Jo}int sample selection and model regularization based on \textbf{S}elf- and \textbf{N}eighbor-\textbf{C}onsistency)を提案する。
具体的には,サンプルの'likelihood'が清潔であるか分布外であるかを測定するために,Jensen-Shannon発散を用いることを提案する。
このプロセスは, 各試料の近傍において, 清潔な試料識別の信頼性を高めるための因子となる。
我々は、クラスごとの選択閾値を調整するための自己適応型データ駆動しきい値設定方式を設計する。
従来の訓練中は, 部分的なラベル学習と負の学習により, 検出された分布内ノイズと分布外ノイズのサンプルをそれぞれ訓練する。
最後に, 自己予測整合性, 近接予測整合性, 特徴整合性を促進する三重項整合性正規化を提案することにより, モデル性能をさらに向上させる。
様々なベンチマークデータセットと包括的アブレーション研究の広範な実験は、既存の最先端手法よりも、我々のアプローチの有効性と優位性を実証している。
関連論文リスト
- Foster Adaptivity and Balance in Learning with Noisy Labels [26.309508654960354]
我々はtextbfSelf-adaptivtextbfE とクラスバランスtextbfD 方式でラベルノイズに対処するための textbfSED という新しい手法を提案する。
平均教師モデルは、ノイズの多いサンプルのラベルを修正するために使用される。
また,検出した雑音に異なる重みを割り当てる自己適応型およびクラスバランスのサンプル再重み付け機構を提案する。
論文 参考訳(メタデータ) (2024-07-03T03:10:24Z) - Extracting Clean and Balanced Subset for Noisy Long-tailed Classification [66.47809135771698]
そこで我々は,分布マッチングの観点から,クラスプロトタイプを用いた新しい擬似ラベリング手法を開発した。
手動で特定の確率尺度を設定することで、ノイズと長い尾を持つデータの副作用を同時に減らすことができる。
本手法は, クリーンなラベル付きクラスバランスサブセットを抽出し, ラベルノイズ付きロングテール分類において, 効果的な性能向上を実現する。
論文 参考訳(メタデータ) (2024-04-10T07:34:37Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
クロスモーダル検索は、実際は精力的な、十分に整合した大規模データセットに依存している。
我々は、新しい雑音対応学習フレームワーク、textbfSelf-textbfReinforcing textbfErrors textbfMitigation(SREM)を導入する。
論文 参考訳(メタデータ) (2023-12-27T09:03:43Z) - PASS: Peer-Agreement based Sample Selection for training with Noisy Labels [16.283722126438125]
ノイズラベルサンプルの頻度は、深層学習において重要な課題となり、過剰適合効果を誘発する。
現在の方法論は、しばしばノイズとクリーンなラベルのサンプルを分離するために、小さな損失仮説や特徴に基づく選択に依存している。
本稿では,PASS (Peer-Agreement based Sample Selection) と呼ばれる新しいノイズラベル検出手法を提案する。
論文 参考訳(メタデータ) (2023-03-20T00:35:33Z) - Learning with Noisy labels via Self-supervised Adversarial Noisy Masking [33.87292143223425]
対向雑音マスキングと呼ばれる新しいトレーニング手法を提案する。
入力データとラベルを同時に調整し、ノイズの多いサンプルが過度に収まらないようにする。
合成および実世界のノイズデータセットの両方でテストされる。
論文 参考訳(メタデータ) (2023-02-14T03:13:26Z) - Learning from Noisy Labels with Coarse-to-Fine Sample Credibility
Modeling [22.62790706276081]
ノイズの多いラベルでディープニューラルネットワーク(DNN)を訓練することは事実上難しい。
従来の取り組みでは、統合されたデノナイジングフローで部分データや完全なデータを扱う傾向があります。
本研究では,ノイズの多いデータを分割・分散的に処理するために,CREMAと呼ばれる粗大な頑健な学習手法を提案する。
論文 参考訳(メタデータ) (2022-08-23T02:06:38Z) - Neighborhood Collective Estimation for Noisy Label Identification and
Correction [92.20697827784426]
ノイズラベルを用いた学習(LNL)は,ノイズラベルに対するモデルオーバーフィットの効果を軽減し,モデル性能と一般化を改善するための戦略を設計することを目的としている。
近年の進歩は、個々のサンプルのラベル分布を予測し、ノイズ検証とノイズラベル補正を行い、容易に確認バイアスを生じさせる。
提案手法では, 候補サンプルの予測信頼性を, 特徴空間近傍と対比することにより再推定する。
論文 参考訳(メタデータ) (2022-08-05T14:47:22Z) - Centrality and Consistency: Two-Stage Clean Samples Identification for
Learning with Instance-Dependent Noisy Labels [87.48541631675889]
本稿では,2段階のクリーンサンプル識別手法を提案する。
まず,クリーンサンプルの早期同定にクラスレベルの特徴クラスタリング手法を用いる。
次に, 基底真理クラス境界に近い残余のクリーンサンプルについて, 一貫性に基づく新しい分類法を提案する。
論文 参考訳(メタデータ) (2022-07-29T04:54:57Z) - Jo-SRC: A Contrastive Approach for Combating Noisy Labels [58.867237220886885]
Jo-SRC (Joint Sample Selection and Model Regularization based on Consistency) というノイズロバスト手法を提案する。
具体的には、対照的な学習方法でネットワークをトレーニングする。
各サンプルの2つの異なるビューからの予測は、クリーンまたは分布不足の「可能性」を推定するために使用されます。
論文 参考訳(メタデータ) (2021-03-24T07:26:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。