論文の概要: Scaling laws for amplitude surrogates
- arxiv url: http://arxiv.org/abs/2601.13308v1
- Date: Mon, 19 Jan 2026 19:00:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-21 22:47:23.020814
- Title: Scaling laws for amplitude surrogates
- Title(参考訳): 振幅サロゲートのスケーリング法則
- Authors: Henning Bahl, Victor Bresó-Pla, Anja Butter, Joaquín Iturriza Ramirez,
- Abstract要約: スケーリング法則は、トレーニングデータの量、費やした計算量、ネットワークサイズに対するニューラルネットワークのパフォーマンスの依存性を記述している。
スケーリング係数はプロセスの外部粒子数に関係していることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scaling laws describing the dependence of neural network performance on the amount of training data, the spent compute, and the network size have emerged across a huge variety of machine learning task and datasets. In this work, we systematically investigate these scaling laws in the context of amplitude surrogates for particle physics. We show that the scaling coefficients are connected to the number of external particles of the process. Our results demonstrate that scaling laws are a useful tool to achieve desired precision targets.
- Abstract(参考訳): ニューラルネットワークのパフォーマンスがトレーニングデータ量、費やした計算量、ネットワークサイズに依存することを記述するスケーリング法則は、膨大な種類の機械学習タスクとデータセットにまたがっている。
本研究では,これらのスケーリング法則を粒子物理学における振幅代理の文脈で体系的に検討する。
スケーリング係数はプロセスの外部粒子数に関係していることを示す。
以上の結果から,スケーリング法則は所望の精度目標を達成する上で有用なツールであることが示唆された。
関連論文リスト
- Bayesian Neural Scaling Law Extrapolation with Prior-Data Fitted Networks [100.13335639780415]
スケーリング法則は、しばしばパワーローに従っており、より大きなスケールでのスケーリングの振る舞いを予測するために、パワーロー関数のいくつかの変種を提案した。
既存の手法は主に点推定に依存しており、現実のアプリケーションにとって欠かせない不確実性を定量化しない。
本研究では,ニューラルスケーリング法外挿のためのPFNに基づくベイズフレームワークについて検討する。
論文 参考訳(メタデータ) (2025-05-29T03:19:17Z) - Information-Theoretic Foundations for Neural Scaling Laws [20.617552198581024]
我々は、ニューラルスケーリング法則のための情報理論の基礎を開発する。
データとモデルサイズの間の最適関係は、対数的要因まで線形であることが観察された。
論文 参考訳(メタデータ) (2024-06-28T02:20:54Z) - Scaling Laws For Dense Retrieval [22.76001461620846]
本研究は,高密度検索モデルの性能が他のニューラルモデルと同様のスケーリング法則に従うかどうかを考察する。
その結果、我々の設定下では、高密度検索モデルの性能は、モデルサイズとアノテーション数に関連する正確なパワーロースケーリングに従っていることがわかった。
論文 参考訳(メタデータ) (2024-03-27T15:27:36Z) - A Dynamical Model of Neural Scaling Laws [79.59705237659547]
ネットワークトレーニングと一般化の解決可能なモデルとして,勾配降下で訓練されたランダムな特徴モデルを分析する。
我々の理論は、データの繰り返し再利用により、トレーニングとテスト損失のギャップが徐々に増大することを示している。
論文 参考訳(メタデータ) (2024-02-02T01:41:38Z) - A Solvable Model of Neural Scaling Laws [72.8349503901712]
大量のパラメータを持つ大規模な言語モデルは、インターネットに近い数のトークンで訓練されると、ニューラルネットワークのスケーリング法則に従うことが実証的に示されている。
我々は,このニューラルスケーリング現象を捉える統計モデル(共同生成データモデルとランダム特徴モデル)を提案する。
主な発見は、自然データセットの統計に現れる電力法則が非線形ランダムな特徴写像によって拡張される方法である。
論文 参考訳(メタデータ) (2022-10-30T15:13:18Z) - Explaining Neural Scaling Laws [17.115592382420626]
訓練されたディープニューラルネットワークの人口減少は、しばしば正確なパワー-ロースケーリング関係に従う。
本稿では、これらのスケーリング法則の起源を説明し、接続する理論を提案する。
データセットとモデルサイズの両方に対する分散制限と分解能制限のスケーリング挙動を同定する。
論文 参考訳(メタデータ) (2021-02-12T18:57:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。