論文の概要: Variational Dual-path Attention Network for CSI-Based Gesture Recognition
- arxiv url: http://arxiv.org/abs/2601.13745v1
- Date: Tue, 20 Jan 2026 09:02:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-21 22:47:23.236487
- Title: Variational Dual-path Attention Network for CSI-Based Gesture Recognition
- Title(参考訳): CSIに基づくジェスチャー認識のための変分デュアルパス注意ネットワーク
- Authors: N. Zhang,
- Abstract要約: チャネル状態情報(CSI)に基づくWi-Fiジェスチャ認識は,エッジデバイス上での高次元ノイズやリソース制約に悩まされている。
本稿では,VDAN(Varial Dual-path Attention Network)という軽量機能前処理モジュールを提案する。
周波数領域フィルタリングと時間検出による構造的特徴改善を行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Wi-Fi gesture recognition based on Channel State Information (CSI) is challenged by high-dimensional noise and resource constraints on edge devices. Prevailing end-to-end models tightly couple feature extraction with classification, overlooking the inherent time-frequency sparsity of CSI and leading to redundancy and poor generalization. To address this, this paper proposes a lightweight feature preprocessing module--the Variational Dual-path Attention Network (VDAN). It performs structured feature refinement through frequency-domain filtering and temporal detection. Variational inference is introduced to model the uncertainty in attention weights, thereby enhancing robustness to noise. The design principles of the module are explained from the perspectives of the information bottleneck and regularization. Experiments on a public dataset demonstrate that the learned attention weights align with the physical sparse characteristics of CSI, verifying its interpretability. This work provides an efficient and explainable front-end processing solution for resource-constrained wireless sensing systems.
- Abstract(参考訳): チャネル状態情報(CSI)に基づくWi-Fiジェスチャー認識は,エッジデバイス上での高次元ノイズやリソース制約によって実現されている。
一般的なエンドツーエンドモデルでは、特徴抽出と分類を密に結合し、CSI固有の時間周波数間隔を見越し、冗長性と一般化の欠如につながった。
そこで本稿では,VDAN(Variational Dual-path Attention Network)という,機能前処理モジュールを提案する。
周波数領域フィルタリングと時間検出による構造的特徴改善を行う。
入射重みの不確かさをモデル化するために変分推論を導入し、ノイズに対する堅牢性を高める。
モジュールの設計原理は、情報のボトルネックと正規化の観点から説明される。
公開データセットの実験では、学習された注意重みがCSIの物理的スパース特性と一致し、その解釈可能性を検証する。
この研究は、リソース制約のある無線センシングシステムに対して、効率的で説明可能なフロントエンド処理ソリューションを提供する。
関連論文リスト
- Source-Free Object Detection with Detection Transformer [59.33653163035064]
Source-Free Object Detection (SFOD) は、ソースデータにアクセスすることなく、ソースドメインから教師なしのターゲットドメインへの知識転送を可能にする。
ほとんどの既存のSFODアプローチは、より高速なR-CNNのような従来のオブジェクト検出(OD)モデルに限られるか、新しいODアーキテクチャ、特に検出変換器(DETR)に適合しない一般的なソリューションとして設計されている。
本稿では,DTRのクエリ中心の機能強化を特化して設計された新しいSFODフレームワークであるFeature Reweighting ANd Contrastive Learning NetworK(FRANCK)を紹介する。
論文 参考訳(メタデータ) (2025-10-13T07:35:04Z) - Dynamic Temporal Positional Encodings for Early Intrusion Detection in IoT [3.6686692131754834]
IoT(Internet of Things)の急速な拡張は、重大なセキュリティ上の課題をもたらしている。
従来の侵入検知システム(IDS)は、しばしばネットワークトラフィックの時間的特性を見落としている。
動的時間的位置エンコーディングを組み込んだトランスフォーマーを用いた早期侵入検知システム(EIDS)を提案する。
論文 参考訳(メタデータ) (2025-06-22T17:56:19Z) - Localized Gaussians as Self-Attention Weights for Point Clouds Correspondence [92.07601770031236]
本稿では,エンコーダのみのトランスフォーマーアーキテクチャのアテンションヘッドにおける意味的意味パターンについて検討する。
注意重みの修正はトレーニングプロセスの促進だけでなく,最適化の安定性の向上にも寄与する。
論文 参考訳(メタデータ) (2024-09-20T07:41:47Z) - Wavelet-based Bi-dimensional Aggregation Network for SAR Image Change Detection [53.842568573251214]
3つのSARデータセットによる実験結果から、我々のWBANetは現代最先端の手法を著しく上回っていることが明らかとなった。
我々のWBANetは、それぞれのデータセットで98.33%、96.65%、96.62%の正確な分類(PCC)を達成している。
論文 参考訳(メタデータ) (2024-07-18T04:36:10Z) - Leveraging Fine-Grained Information and Noise Decoupling for Remote Sensing Change Detection [40.63328380227243]
変化検出は、バイテンポラルイメージペア間のデータを分析することによって、リモートセンシングオブジェクトの変化を識別することを目的としている。
これまでの努力は、デノベーションに過度に焦点を合わせてきたが、これは、きめ細かい情報を大量に失うことになる。
本稿では,微細な情報補償とノイズデカップリングのための一連の操作を提案する。
論文 参考訳(メタデータ) (2024-04-17T12:32:10Z) - Frequency Perception Network for Camouflaged Object Detection [51.26386921922031]
周波数領域のセマンティック階層によって駆動される新しい学習可能かつ分離可能な周波数知覚機構を提案する。
ネットワーク全体では、周波数誘導粗い局所化ステージと細部保存の微細局在化ステージを含む2段階モデルを採用している。
提案手法は,既存のモデルと比較して,3つのベンチマークデータセットにおいて競合性能を実現する。
論文 参考訳(メタデータ) (2023-08-17T11:30:46Z) - Learnable Multi-level Frequency Decomposition and Hierarchical Attention
Mechanism for Generalized Face Presentation Attack Detection [7.324459578044212]
顔提示攻撃検知(PAD)は多くの注目を集めており、顔認識システムを保護する上で重要な役割を果たしている。
両ストリーム畳み込みニューラルネットワーク(CNN)フレームワークを提案する。
ステップワイドアブレーション研究において提案したPAD法の設計を実証した。
論文 参考訳(メタデータ) (2021-09-16T13:06:43Z) - Interpretable Detail-Fidelity Attention Network for Single Image
Super-Resolution [89.1947690981471]
本研究では,スムースとディテールを段階的に分割・収束的に処理する,目的・解釈可能なディテール・ファイダリティ・アテンション・ネットワークを提案する。
特に,詳細推論において顕著な解釈可能な特徴表現のためのヘシアンフィルタを提案する。
実験により,提案手法は最先端手法よりも優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2020-09-28T08:31:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。