論文の概要: Proximal Policy Optimization with Evolutionary Mutations
- arxiv url: http://arxiv.org/abs/2601.14705v1
- Date: Wed, 21 Jan 2026 06:34:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-22 21:27:50.264672
- Title: Proximal Policy Optimization with Evolutionary Mutations
- Title(参考訳): 進化的変異を用いた近似的政策最適化
- Authors: Casimir Czworkowski, Stephen Hornish, Alhassan S. Yasin,
- Abstract要約: Proximal Policy Optimization (PPO) は、その安定性とサンプル効率で広く使われている強化学習アルゴリズムである。
本稿では、PPOの早期収束を克服するためのPOEM(Proximal Policy Evolutionary Optimization)を提案する。
我々は、CarRacing、MountainCar、BipedalWalker、LunarLanderの4つのOpenAI環境でPOEMを評価した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Proximal Policy Optimization (PPO) is a widely used reinforcement learning algorithm known for its stability and sample efficiency, but it often suffers from premature convergence due to limited exploration. In this paper, we propose POEM (Proximal Policy Optimization with Evolutionary Mutations), a novel modification to PPO that introduces an adaptive exploration mechanism inspired by evolutionary algorithms. POEM enhances policy diversity by monitoring the Kullback-Leibler (KL) divergence between the current policy and a moving average of previous policies. When policy changes become minimal, indicating stagnation, POEM triggers an adaptive mutation of policy parameters to promote exploration. We evaluate POEM on four OpenAI Gym environments: CarRacing, MountainCar, BipedalWalker, and LunarLander. Through extensive fine-tuning using Bayesian optimization techniques and statistical testing using Welch's t-test, we find that POEM significantly outperforms PPO on three of the four tasks (BipedalWalker: t=-2.0642, p=0.0495; CarRacing: t=-6.3987, p=0.0002; MountainCar: t=-6.2431, p<0.0001), while performance on LunarLander is not statistically significant (t=-1.8707, p=0.0778). Our results highlight the potential of integrating evolutionary principles into policy gradient methods to overcome exploration-exploitation tradeoffs.
- Abstract(参考訳): Proximal Policy Optimization (PPO) は、その安定性とサンプル効率で広く使われている強化学習アルゴリズムであるが、探索が限られているため、早めの収束に悩まされることが多い。
本稿では,進化的アルゴリズムにインスパイアされた適応探索機構を導入するPOEM(Proximal Policy Optimization with Evolutionary Mutations)を提案する。
POEMは、KL(Kulback-Leibler)の現在のポリシーと以前のポリシーの移動平均との差異を監視することで、ポリシーの多様性を高める。
政策変更が最小限になり、停滞を示すと、POEMは探索を促進するために政策パラメータの適応的な突然変異を引き起こす。
我々は,OpenAI Gym環境であるCarRacing,MountainCar,BipedalWalker,LunarLanderの4つのPOEMを評価した。
Welch の t-test を用いたベイズ最適化手法と統計的テストにより、POEM は 4 つのタスクのうち 3 つのタスク (BipedalWalker: t=-2.0642, p=0.0495; CarRacing: t=-6.3987, p=0.0002; MountainCar: t=-6.2431, p<0.0001) で PPO を著しく上回り、一方 LunarLander のパフォーマンスは統計的に有意ではない(t=-1.8707, p=0.0778)。
本研究は, 進化的原理を政策勾配法に統合し, 探査・探査のトレードオフを克服する可能性を強調した。
関連論文リスト
- BAPO: Stabilizing Off-Policy Reinforcement Learning for LLMs via Balanced Policy Optimization with Adaptive Clipping [69.74252624161652]
適応クリッピング(BAPO)を用いたBAlanced Policy Optimizationを提案する。
BAPOはクリッピングバウンダリを動的に調整し、適応的に正と負のコントリビューションを再バランスさせ、エントロピーを保持し、RL最適化を安定化させる。
AIME 2024とAIME 2025ベンチマークでは、7B BAPOモデルがSkyWork-OR1-7Bのようなオープンソースモデルを上回っています。
論文 参考訳(メタデータ) (2025-10-21T12:55:04Z) - Geometric-Mean Policy Optimization [117.05113769757172]
グループ相対政策最適化(GRPO)は,大規模言語モデルの推論能力を大幅に向上させた。
GRPOは、不利な重要度重み付けされた報酬を持つトークンに直面すると、不安定なポリシー更新に悩まされる。
本稿では,GRPOの安定性を向上させるために,トークン報酬の出力を抑えることにより,GMPO(Geometric-Mean Policy Optimization)を提案する。
論文 参考訳(メタデータ) (2025-07-28T09:54:05Z) - Survival of the Fittest: Evolutionary Adaptation of Policies for Environmental Shifts [0.15889427269227555]
進化ゲーム理論(EGT)にインスパイアされた適応的再学習アルゴリズムを開発する。
ERPOは、ポリシー適応の高速化、平均報酬の向上、およびポリシー適応の計算コストの削減を示す。
論文 参考訳(メタデータ) (2024-10-22T09:29:53Z) - Towards Efficient Exact Optimization of Language Model Alignment [93.39181634597877]
嗜好データから直接ポリシーを最適化するために、直接選好最適化(DPO)が提案された。
問題の最適解に基づいて導出されたDPOが,現実の最適解の妥協平均探索近似に繋がることを示す。
本稿では、アライメント目的の効率的な精度最適化(EXO)を提案する。
論文 参考訳(メタデータ) (2024-02-01T18:51:54Z) - Clipped-Objective Policy Gradients for Pessimistic Policy Optimization [3.2996723916635275]
政策勾配法は、政策出力の有界変化を通じて単調な改善を図っている。
本研究では,PPOの性能を連続的な作用空間に適用した場合,目的の単純変化によって一貫した改善が期待できることを示す。
PPO と PPO の両目標に比較して, COPG の目標が平均的な「悲観的」であること, 2) この悲観主義は探索を促進させることを示した。
論文 参考訳(メタデータ) (2023-11-10T03:02:49Z) - Acceleration in Policy Optimization [50.323182853069184]
我々は、楽観的かつ適応的な更新を通じて、政策改善のステップにフォレストを組み込むことにより、強化学習(RL)における政策最適化手法を加速するための統一パラダイムに向けて研究する。
我々は、楽観主義を、政策の将来行動の予測モデルとして定義し、適応性は、過度な予測や変化に対する遅延反応からエラーを軽減するために、即時かつ予測的な修正措置をとるものである。
我々は,メタグラディエント学習による適応型楽観的ポリシー勾配アルゴリズムを設計し,実証的なタスクにおいて,加速度に関連するいくつかの設計選択を実証的に強調する。
論文 参考訳(メタデータ) (2023-06-18T15:50:57Z) - Local Optimization Achieves Global Optimality in Multi-Agent
Reinforcement Learning [139.53668999720605]
本稿では,各エージェントのローカルポリシーをバニラPPOと同様に更新するマルチエージェントPPOアルゴリズムを提案する。
マルコフゲームにおける標準正則条件と問題依存量により、我々のアルゴリズムはサブリニアレートで大域的最適ポリシーに収束することを示す。
論文 参考訳(メタデータ) (2023-05-08T16:20:03Z) - Robust Policy Optimization in Deep Reinforcement Learning [16.999444076456268]
連続的な行動領域では、パラメータ化された行動分布は容易に探索の制御を可能にする。
特に,摂動分布を利用したロバストポリシ最適化(RPO)アルゴリズムを提案する。
我々は,DeepMind Control,OpenAI Gym,Pybullet,IsaacGymの各種連続制御タスクについて評価を行った。
論文 参考訳(メタデータ) (2022-12-14T22:43:56Z) - Sigmoidally Preconditioned Off-policy Learning:a new exploration method
for reinforcement learning [14.991913317341417]
政治以外のアクター・クリティカルアーキテクチャに着目し,P3O(Preconditioned Proximal Policy Optimization)と呼ばれる新しい手法を提案する。
P3Oは、保守政策反復(CPI)目標に事前条件を適用することにより、重要度サンプリングの高分散を制御できる。
その結果,P3Oはトレーニング過程においてPPOよりもCPI目標を最大化できることがわかった。
論文 参考訳(メタデータ) (2022-05-20T09:38:04Z) - EnTRPO: Trust Region Policy Optimization Method with Entropy
Regularization [1.599072005190786]
信頼地域政策最適化(Trust Region Policy Optimization, TRPO)は、強化学習における政策探索アルゴリズムである。
本研究では、リプレイバッファを用いて、政治以外の学習環境からTRPOに借用する。
TRPO において、時間ステップで蓄積される pi の利点を生かすためにエントロピー正則化項を付加する。
論文 参考訳(メタデータ) (2021-10-26T03:04:00Z) - Provably Efficient Exploration in Policy Optimization [117.09887790160406]
本稿では,最適化アルゴリズム(OPPO)の最適変種を提案する。
OPPO は $tildeO(sqrtd2 H3 T )$ regret を達成する。
我々の知る限りでは、OPPOは、探索する最初の証明可能な効率的なポリシー最適化アルゴリズムである。
論文 参考訳(メタデータ) (2019-12-12T08:40:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。