論文の概要: Class Confidence Aware Reweighting for Long Tailed Learning
- arxiv url: http://arxiv.org/abs/2601.15924v1
- Date: Thu, 22 Jan 2026 12:58:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-23 21:37:20.604174
- Title: Class Confidence Aware Reweighting for Long Tailed Learning
- Title(参考訳): 長期学習のためのクラス信頼度を考慮した再重み付け
- Authors: Brainard Philemon Jagati, Jitendra Tembhurne, Harsh Goud, Rudra Pratap Singh, Chandrashekhar Meshram,
- Abstract要約: 本稿では,長期学習のためのクラスの設計と信頼性を考慮した再重み付け手法を提案する。
我々は、(p_t,f_c)関数を用いて、予測の信頼性値に基づいて、トレーニングタスクに対するコントリビューションの変調を可能にする。
- 参考スコア(独自算出の注目度): 0.8297806372438926
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural network models degrade significantly in the long-tailed data distribution, with the overall training data dominated by a small set of classes in the head, and the tail classes obtaining less training examples. Addressing the imbalance in the classes, attention in the related literature was given mainly to the adjustments carried out in the decision space in terms of either corrections performed at the logit level in order to compensate class-prior bias, with the least attention to the optimization process resulting from the adjustments introduced through the differences in the confidences among the samples. In the current study, we present the design of a class and confidence-aware re-weighting scheme for long-tailed learning. This scheme is purely based upon the loss level and has a complementary nature to the existing methods performing the adjustment of the logits. In the practical implementation stage of the proposed scheme, we use an Ω(p_t, f_c) function. This function enables the modulation of the contribution towards the training task based upon the confidence value of the prediction, as well as the relative frequency of the corresponding class. Our observations in the experiments are corroborated by significant experimental results performed on the CIFAR-100-LT, ImageNet-LT, and iNaturalist2018 datasets under various values of imbalance factors that clearly authenticate the theoretical discussions above.
- Abstract(参考訳): ディープニューラルネットワークモデルは、長い尾のデータ分布において著しく低下し、全体のトレーニングデータは、頭の中の小さなクラスのセットに支配され、テールクラスはトレーニングの少ない例を得る。
授業内の不均衡に対処するためには, クラスプライアバイアスを補償するために, クラスプライアバイアスを補正するために, クラスプライアバイアスを補正するために, クラスプライアバイアスを補正するために, クラスプライアバイアスを補正するために, 決定空間で行う調整に, 関連文献の注意を主に向けた。
本研究では,長期学習のためのクラスの設計と信頼性を考慮した再重み付け手法を提案する。
このスキームは純粋に損失レベルに基づいており、ロジットの調整を行う既存の方法と相補的な性質を持つ。
提案手法の実践的な実装段階では、Ω(p_t, f_c) 関数を用いる。
この関数は、予測の信頼性値と対応するクラスの相対周波数に基づいて、トレーニングタスクに対するコントリビューションの変調を可能にする。
CIFAR-100-LT, ImageNet-LT, iNaturalist2018データセットにおいて, 上記の理論的議論を明確に裏付ける様々な不均衡因子の値の下で行った有意な実験結果と相関する。
関連論文リスト
- Gradient Reweighting: Towards Imbalanced Class-Incremental Learning [8.438092346233054]
CIL(Class-Incremental Learning)は、非定常データから新しいクラスを継続的に認識するためにモデルを訓練する。
CILの大きな課題は、非一様分布を特徴とする実世界のデータに適用する場合である。
この二重不均衡問題により、FC層に偏りのある勾配更新が生じ、CILの過度/過度な適合と破滅的な忘れが引き起こされる。
論文 参考訳(メタデータ) (2024-02-28T18:08:03Z) - Bias Mitigating Few-Shot Class-Incremental Learning [17.185744533050116]
クラス増分学習は,限定された新規クラスサンプルを用いて,新規クラスを継続的に認識することを目的としている。
最近の手法では,段階的なセッションで特徴抽出器を微調整することにより,ベースクラスとインクリメンタルクラスの精度の不均衡を緩和している。
本研究では,FSCIL問題におけるモデルバイアスを緩和する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-01T10:37:41Z) - Simplifying Neural Network Training Under Class Imbalance [77.39968702907817]
実世界のデータセットは、しばしば高いクラス不均衡であり、ディープラーニングモデルのパフォーマンスに悪影響を及ぼす可能性がある。
クラス不均衡下でのニューラルネットワークのトレーニングに関する研究の大部分は、特殊な損失関数、サンプリング技術、または2段階のトレーニング手順に焦点を当てている。
バッチサイズやデータ拡張,ラベルの平滑化といった,標準的なディープラーニングパイプラインの既存のコンポーネントを単にチューニングするだけで,そのような特殊なクラス不均衡な手法を使わずに,最先端のパフォーマンスを達成できることを実証する。
論文 参考訳(メタデータ) (2023-12-05T05:52:44Z) - On the Trade-off of Intra-/Inter-class Diversity for Supervised
Pre-training [72.8087629914444]
教師付き事前学習データセットのクラス内多様性(クラス毎のサンプル数)とクラス間多様性(クラス数)とのトレードオフの影響について検討した。
トレーニング前のデータセットのサイズが固定された場合、最高のダウンストリームのパフォーマンスは、クラス内/クラス間の多様性のバランスがとれる。
論文 参考訳(メタデータ) (2023-05-20T16:23:50Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
フェデレートラーニング(FL)は、グローバルモデルを協調的にトレーニングする複数のクライアントを含む、人気のある分散ラーニングパラダイムになっています。
データサンプルは通常、現実世界の長い尾の分布に従っており、分散化された長い尾のデータのFLは、貧弱なグローバルモデルをもたらす。
本研究では、局所的な実データとグローバルな勾配のプロトタイプを統合し、局所的なバランスの取れたデータセットを形成する。
論文 参考訳(メタデータ) (2023-01-25T03:18:10Z) - Adaptive Dimension Reduction and Variational Inference for Transductive
Few-Shot Classification [2.922007656878633]
適応次元の削減によりさらに改善された変分ベイズ推定に基づく新しいクラスタリング法を提案する。
提案手法は,Few-Shotベンチマークにおける現実的非バランスなトランスダクティブ設定の精度を大幅に向上させる。
論文 参考訳(メタデータ) (2022-09-18T10:29:02Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
現代のディープニューラルネットワークは、破損したラベルやクラス不均衡を含むバイアス付きトレーニングデータに容易に適合する。
サンプル再重み付け手法は、このデータバイアス問題を緩和するために一般的に使用されている。
本稿では,データから直接明示的な重み付け方式を適応的に学習できるメタモデルを提案する。
論文 参考訳(メタデータ) (2022-02-11T13:49:51Z) - Analyzing Overfitting under Class Imbalance in Neural Networks for Image
Segmentation [19.259574003403998]
画像分割では、ニューラルネットワークは小さな構造物の前景サンプルに過剰に適合する可能性がある。
本研究では,ネットワークの動作を検査することにより,クラス不均衡下でのオーバーフィッティング問題に対する新たな知見を提供する。
論文 参考訳(メタデータ) (2021-02-20T14:57:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。