論文の概要: PRISM: Purified Representation and Integrated Semantic Modeling for Generative Sequential Recommendation
- arxiv url: http://arxiv.org/abs/2601.16556v1
- Date: Fri, 23 Jan 2026 08:50:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-26 14:27:27.611924
- Title: PRISM: Purified Representation and Integrated Semantic Modeling for Generative Sequential Recommendation
- Title(参考訳): PRISM:生成シークエンシャルレコメンデーションのための純粋表現と統合セマンティックモデリング
- Authors: Dengzhao Fang, Jingtong Gao, Yu Li, Xiangyu Zhao, Yi Chang,
- Abstract要約: 本稿では,PRISMとPureified RepresentationとIntegrated Semantic Modelingを組み合わせた新しい生成レコメンデーションフレームワークを提案する。
PRISMは4つの実世界のデータセットで、最先端のベースラインを一貫して上回る。
- 参考スコア(独自算出の注目度): 28.629759086187352
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative Sequential Recommendation (GSR) has emerged as a promising paradigm, reframing recommendation as an autoregressive sequence generation task over discrete Semantic IDs (SIDs), typically derived via codebook-based quantization. Despite its great potential in unifying retrieval and ranking, existing GSR frameworks still face two critical limitations: (1) impure and unstable semantic tokenization, where quantization methods struggle with interaction noise and codebook collapse, resulting in SIDs with ambiguous discrimination; and (2) lossy and weakly structured generation, where reliance solely on coarse-grained discrete tokens inevitably introduces information loss and neglects items' hierarchical logic. To address these issues, we propose a novel generative recommendation framework, PRISM, with Purified Representation and Integrated Semantic Modeling. Specifically, to ensure high-quality tokenization, we design a Purified Semantic Quantizer that constructs a robust codebook via adaptive collaborative denoising and hierarchical semantic anchoring mechanisms. To compensate for information loss during quantization, we further propose an Integrated Semantic Recommender, which incorporates a dynamic semantic integration mechanism to integrate fine-grained semantics and enforces logical validity through a semantic structure alignment objective. PRISM consistently outperforms state-of-the-art baselines across four real-world datasets, demonstrating substantial performance gains, particularly in high-sparsity scenarios.
- Abstract(参考訳): Generative Sequential Recommendation (GSR) は有望なパラダイムとして現れており、通常はコードブックベースの量子化によって導出される離散セマンティックID (SID) よりも自己回帰シーケンス生成タスクとして推奨されている。
検索とランキングを統一する大きな可能性にもかかわらず、既存のGSRフレームワークは、(1)不純で不安定なセマンティックトークン化、(量子化手法が相互作用ノイズとコードブックの崩壊に苦しむ結果、曖昧な差別を伴うSID、(2)粗い粒度の離散トークンにのみ依存する損失と弱構造化された生成、の2つの重要な制限に直面している。
これらの課題に対処するために,Pureified RepresentationとIntegrated Semantic Modelingを併用した新しい生成レコメンデーションフレームワークPRISMを提案する。
具体的には、高品質なトークン化を確保するために、適応的な協調的記述と階層的セマンティックアンカリング機構によって堅牢なコードブックを構築するPureified Semantic Quantizerを設計する。
さらに,量子化時の情報損失を補うために,動的セマンティック・レコメンダを組み込んだ統合セマンティック・レコメンダを提案する。
PRISMは4つの実世界のデータセットで、最先端のベースラインを一貫して上回り、特に高分散シナリオにおいて、大幅なパフォーマンス向上を示している。
関連論文リスト
- MAESTRO: Meta-learning Adaptive Estimation of Scalarization Trade-offs for Reward Optimization [56.074760766965085]
大規模言語モデル(LLM)の整合性のための効率的なパラダイムとしてグループ相対政策最適化が登場している。
我々は,報酬スカラー化を動的潜在ポリシーとして扱い,モデルの終端隠蔽状態を意味的ボトルネックとして活用するMAESTROを提案する。
本稿では,軽量コンダクタネットワークがメタリワード信号としてグループ相対的優位性を生かしてポリシと共進化する,双方向最適化フレームワークにおけるコンテキスト的帯域幅問題としてこれを定式化する。
論文 参考訳(メタデータ) (2026-01-12T05:02:48Z) - Reasoning-Driven Amodal Completion: Collaborative Agents and Perceptual Evaluation [17.405818788700234]
本稿では,視覚合成から意味的計画を明確に分離する協調的マルチエージェント推論フレームワークを提案する。
提案手法は,画素生成前の構造的,明示的なプランを生成し,視覚的,意味的に整合した単一パス合成を可能にする。
従来の評価基準の限界に対処し,新しい人間対応評価指標MAC-Scoreを導入する。
論文 参考訳(メタデータ) (2025-12-24T04:39:45Z) - Generative Reasoning Recommendation via LLMs [48.45009951684554]
大規模言語モデル(LLM)は、生成的推論レコメンデーションモデル(GRRM)として機能する上で、根本的な課題に直面している。
本研究は,レコメンデーションタスクに対する統一的な理解・推論・予測方法を実現する,事前学習されたLLMを適用してGRRMを構築する方法について検討する。
本稿では,協調的セマンティックアライメント(Collaborative-Semantic Alignment),Reasoning Curriculum Activation(Reasoning Curriculum Activation),Sparse-Regularized Group Policy Optimization(Sparse-Regularized Group Policy Optimization)の3つのコンポーネントを統合するエンドツーエンドフレームワークであるGREAMを提案する。
論文 参考訳(メタデータ) (2025-10-23T17:59:31Z) - IAR2: Improving Autoregressive Visual Generation with Semantic-Detail Associated Token Prediction [77.06211178777939]
IAR2は、階層的なセマンティックディーテール合成プロセスを可能にする高度な自己回帰フレームワークである。
我々は、IAR2が自動回帰画像生成のための新しい最先端技術を設定し、ImageNet上で1.50のFIDを達成することを示す。
論文 参考訳(メタデータ) (2025-10-08T12:08:21Z) - $φ^{\infty}$: Clause Purification, Embedding Realignment, and the Total Suppression of the Em Dash in Autoregressive Language Models [0.0]
自動回帰変換言語モデルにおいて,エムダッシュトークンがセマンティックドリフトを引き起こす重大な脆弱性を同定する。
本稿では,フィインフィニティ演算子とターゲット埋め込み行列を併用した記号節の浄化法を提案する。
論文 参考訳(メタデータ) (2025-06-22T18:27:39Z) - BBQRec: Behavior-Bind Quantization for Multi-Modal Sequential Recommendation [15.818669767036592]
本稿では,2列列の量子化とセマンティックス・アウェア・シーケンス・モデリングを備えたBBQRec(Behavior-Bind Multi-modal Quantization for Sequential Recommendation)を提案する。
BBQRecは、コントラストのあるコードブック学習を通じて、ノイズの多いモダリティ特有の特徴からモダリティに依存しない行動パターンを分離する。
我々は、量子化された意味関係を用いて自己注意スコアを動的に調整する離散化類似度再重み付け機構を設計する。
論文 参考訳(メタデータ) (2025-04-09T07:19:48Z) - Learnable Item Tokenization for Generative Recommendation [113.80559032128065]
LETTER (Larnable Tokenizer for generaTivE Recommendation) を提案する。
LETTERは、セマンティック正規化のためのResidual Quantized VAE、協調正規化のためのコントラストアライメント損失、コードの割り当てバイアスを軽減するための多様性損失を組み込んでいる。
論文 参考訳(メタデータ) (2024-05-12T15:49:38Z) - UGMAE: A Unified Framework for Graph Masked Autoencoders [67.75493040186859]
グラフマスク付きオートエンコーダのための統一フレームワークであるUGMAEを提案する。
まず,ノードの特異性を考慮した適応型特徴マスク生成器を開発した。
次に,階層型構造再構成と特徴再構成を併用し,総合的なグラフ情報を取得する。
論文 参考訳(メタデータ) (2024-02-12T19:39:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。