論文の概要: Implicit Neural Representation-Based Continuous Single Image Super Resolution: An Empirical Study
- arxiv url: http://arxiv.org/abs/2601.17723v1
- Date: Sun, 25 Jan 2026 07:09:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-27 15:23:08.23242
- Title: Implicit Neural Representation-Based Continuous Single Image Super Resolution: An Empirical Study
- Title(参考訳): Inlicit Neural Representation-based Continuous Single Image Super resolution: an empirical Study
- Authors: Tayyab Nasir, Daochang Liu, Ajmal Mian,
- Abstract要約: 入射神経表現(INR)は任意のスケール画像超解像(ASSR)の標準的アプローチとなっている
既存の手法を多様な設定で比較し、複数の画像品質指標に対して集計結果を示す。
トレーニング中, エッジ, テクスチャ, 細部を保存しながら, 強度変化をペナライズする新たな損失関数について検討した。
- 参考スコア(独自算出の注目度): 50.15623093332659
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Implicit neural representation (INR) has become the standard approach for arbitrary-scale image super-resolution (ASSR). To date, no empirical study has systematically examined the effectiveness of existing methods, nor investigated the effects of different training recipes, such as scaling laws, objective design, and optimization strategies. A rigorous empirical analysis is essential not only for benchmarking performance and revealing true gains but also for establishing the current state of ASSR, identifying saturation limits, and highlighting promising directions. We fill this gap by comparing existing techniques across diverse settings and presenting aggregated performance results on multiple image quality metrics. We contribute a unified framework and code repository to facilitate reproducible comparisons. Furthermore, we investigate the impact of carefully controlled training configurations on perceptual image quality and examine a new loss function that penalizes intensity variations while preserving edges, textures, and finer details during training. We conclude the following key insights that have been previously overlooked: (1) Recent, more complex INR methods provide only marginal improvements over earlier methods. (2) Model performance is strongly correlated to training configurations, a factor overlooked in prior works. (3) The proposed loss enhances texture fidelity across architectures, emphasizing the role of objective design for targeted perceptual gains. (4) Scaling laws apply to INR-based ASSR, confirming predictable gains with increased model complexity and data diversity.
- Abstract(参考訳): Inlicit Neural representation (INR) は任意のスケールの画像超解像(ASSR)の標準的なアプローチとなっている。
これまで、既存の方法の有効性を体系的に検討したり、スケーリング法や客観的設計、最適化戦略といった異なるトレーニングレシピの効果を調べたりした経験的な研究は行われていない。
厳密な経験分析は、性能をベンチマークし、真の利益を明らかにするだけでなく、ASSRの現在の状態を確立し、飽和限界を特定し、期待できる方向を強調するためにも不可欠である。
このギャップを埋めるために、さまざまな設定にまたがって既存のテクニックを比較し、複数の画像品質指標に集約されたパフォーマンス結果を示す。
再現可能な比較を容易にするため、統合されたフレームワークとコードリポジトリをコントリビュートします。
さらに、注意深く制御されたトレーニング構成が知覚的画質に与える影響について検討し、トレーニング中にエッジ、テクスチャ、細部を保存しながら強度変化をペナルティ化する新たな損失関数について検討する。
1)最近の複雑なINR法は,従来の手法に比べて限界的な改善しか得られない。
2) モデル性能は,事前の作業で見落とされた要因であるトレーニング構成と強く相関している。
(3) 提案した損失は建築全体のテクスチャ忠実度を高め, 対象とした知覚的利得に対する客観的デザインの役割を強調した。
(4) スケーリング法則は,INRに基づくASSRに適用され,モデル複雑性とデータの多様性が増大し,予測可能な利得が確認された。
関連論文リスト
- Physics-Guided Null-Space Diffusion with Sparse Masking for Corrective Sparse-View CT Reconstruction [5.479463752172751]
拡散モデルは画像処理タスクにおいて顕著な生成能力を示した。
スパース・ビューCT再構成のためのスパース・コンディション・リワイト統合分布推定誘導拡散モデル(STRIDE)を提案する。
実験結果から,PSNRでは2.58dB,SSIMでは2.37%,MSEでは0.236に改善した。
論文 参考訳(メタデータ) (2025-09-07T09:42:16Z) - Towards Robust Out-of-Distribution Generalization: Data Augmentation and Neural Architecture Search Approaches [4.577842191730992]
我々は、ディープラーニングのための堅牢なOoD一般化への道を探る。
まず,認識に必須でない特徴間の素早い相関を解消するための,新しい効果的なアプローチを提案する。
次に,OoDシナリオにおけるニューラルアーキテクチャ探索の強化問題について検討する。
論文 参考訳(メタデータ) (2024-10-25T20:50:32Z) - Co-learning Single-Step Diffusion Upsampler and Downsampler with Two Discriminators and Distillation [28.174638880324014]
超解像度(SR)は、高解像度(HR)画像を低解像度(LR)画像から再構成することを目的としている。
単段階拡散に基づくアップサンプラーと学習可能なダウンサンプラーを協調的に最適化するコラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-10T07:12:46Z) - Improving Neural Surface Reconstruction with Feature Priors from Multi-View Image [87.00660347447494]
ニューラルサーフェス・コンストラクション(NSR)の最近の進歩は、ボリュームレンダリングと組み合わせることで、マルチビュー・コンストラクションを著しく改善している。
本稿では,多種多様な視覚的タスクから価値ある特徴を活用すべく,特徴レベルの一貫した損失について検討する。
DTU と EPFL を用いて解析した結果,画像マッチングと多視点ステレオデータセットによる特徴が,他のプリテキストタスクよりも優れていたことが判明した。
論文 参考訳(メタデータ) (2024-08-04T16:09:46Z) - Contrastive-Adversarial and Diffusion: Exploring pre-training and fine-tuning strategies for sulcal identification [3.0398616939692777]
対人学習、コントラスト学習、拡散認知学習、通常の再構成学習といった技術が標準となっている。
この研究は、ニューラルネットワークの学習プロセスを強化するために、事前学習技術と微調整戦略の利点を解明することを目的としている。
論文 参考訳(メタデータ) (2024-05-29T15:44:51Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
エイリアスの影響を抑制するために階層画像超解像ネットワーク(HSRNet)を提案する。
HSRNetは、他の作品よりも定量的かつ視覚的なパフォーマンスを向上し、エイリアスをより効果的に再送信する。
論文 参考訳(メタデータ) (2022-06-07T14:55:32Z) - Real-World Image Super-Resolution by Exclusionary Dual-Learning [98.36096041099906]
実世界の画像超解像は,高品質な画像を得るための実用的な画像復元問題である。
深層学習に基づく手法は、現実世界の超解像データセットの復元に期待できる品質を実現している。
本稿では,RWSR-EDL(Real-World Image Super-Resolution by Exclusionary Dual-Learning)を提案する。
論文 参考訳(メタデータ) (2022-06-06T13:28:15Z) - Robust Single Image Dehazing Based on Consistent and Contrast-Assisted
Reconstruction [95.5735805072852]
画像復調モデルのロバスト性を改善するための新しい密度変分学習フレームワークを提案する。
具体的には、デハジングネットワークは、一貫性の規則化されたフレームワークの下で最適化されている。
我々の手法は最先端のアプローチを大きく上回っている。
論文 参考訳(メタデータ) (2022-03-29T08:11:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。