論文の概要: Bridging Supervision Gaps: A Unified Framework for Remote Sensing Change Detection
- arxiv url: http://arxiv.org/abs/2601.17747v1
- Date: Sun, 25 Jan 2026 08:43:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-27 15:23:08.314923
- Title: Bridging Supervision Gaps: A Unified Framework for Remote Sensing Change Detection
- Title(参考訳): Bridging Supervision Gaps: リモートセンシングによる変更検出のための統一フレームワーク
- Authors: Kaixuan Jiang, Chen Wu, Zhenghui Zhao, Chengxi Han,
- Abstract要約: UniCDは、教師付き、弱教師付き、教師なしのタスクを協調的に処理する。
UniCDは共有エンコーダとマルチブランチ協調学習機構を通じてアーキテクチャ上の障壁を取り除く。
主流データセットの実験は、UniCDが3つのタスクで最適なパフォーマンスを達成することを示した。
- 参考スコア(独自算出の注目度): 2.7351165166984845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Change detection (CD) aims to identify surface changes from multi-temporal remote sensing imagery. In real-world scenarios, Pixel-level change labels are expensive to acquire, and existing models struggle to adapt to scenarios with diverse annotation availability. To tackle this challenge, we propose a unified change detection framework (UniCD), which collaboratively handles supervised, weakly-supervised, and unsupervised tasks through a coupled architecture. UniCD eliminates architectural barriers through a shared encoder and multi-branch collaborative learning mechanism, achieving deep coupling of heterogeneous supervision signals. Specifically, UniCD consists of three supervision-specific branches. In the supervision branch, UniCD introduces the spatial-temporal awareness module (STAM), achieving efficient synergistic fusion of bi-temporal features. In the weakly-supervised branch, we construct change representation regularization (CRR), which steers model convergence from coarse-grained activations toward coherent and separable change modeling. In the unsupervised branch, we propose semantic prior-driven change inference (SPCI), which transforms unsupervised tasks into controlled weakly-supervised path optimization. Experiments on mainstream datasets demonstrate that UniCD achieves optimal performance across three tasks. It exhibits significant accuracy improvements in weakly and unsupervised scenarios, surpassing current state-of-the-art by 12.72% and 12.37% on LEVIR-CD, respectively.
- Abstract(参考訳): 変化検出(CD)は、多時間リモートセンシング画像から表面の変化を特定することを目的としている。
現実のシナリオでは、Pixelレベルの変更ラベルを取得するにはコストがかかる。
この課題に対処するために,統合アーキテクチャを用いて教師付き,弱教師付き,教師なしタスクを協調的に処理する統合変更検出フレームワーク(UniCD)を提案する。
UniCDは、共有エンコーダとマルチブランチ協調学習機構を通じてアーキテクチャ障壁を排除し、異種監視信号の深い結合を実現する。
具体的には、UniCDは3つの専門分野から構成される。
監督部門では、両時間特徴の効率的な相乗的融合を実現するため、空間時間認識モジュール(STAM)を導入している。
弱教師付き分岐では、粗い粒度の活性化からコヒーレントかつ分離可能な変化モデリングへ収束する変化表現正規化(CRR)を構築する。
教師なし分岐では、教師なしタスクを弱教師付きパス最適化に変換する意味的事前駆動型変更推論(SPCI)を提案する。
主流データセットの実験は、UniCDが3つのタスクで最適なパフォーマンスを達成することを示した。
LEVIR-CDでは、現状の12.72%と12.37%をそれぞれ上回っている。
関連論文リスト
- Integrating Diverse Assignment Strategies into DETRs [61.61489761918158]
ラベル割り当ては、特にDETRスタイルのフレームワークにおいて、オブジェクト検出器において重要なコンポーネントである。
我々は,任意のDETR型検出器に多様な割り当て戦略をシームレスに統合する,フレキシブルで軽量なフレームワークであるLoRA-DETRを提案する。
論文 参考訳(メタデータ) (2026-01-14T07:28:54Z) - DiffRegCD: Integrated Registration and Change Detection with Diffusion Features [74.3102451211493]
DiffRegCDは、単一のモデルで密度の高い登録と変更検出を統一する統合フレームワークである。
空中(LEVIR-CD, DSIFN-CD, WHU-CD, SYSU-CD)と地上(VL-CMU-CD)のデータセットによる実験は、DiffRegCDが最近のベースラインを一貫して上回っていることを示している。
論文 参考訳(メタデータ) (2025-11-11T07:32:19Z) - Overlap-Aware Feature Learning for Robust Unsupervised Domain Adaptation for 3D Semantic Segmentation [9.578322021478426]
3Dポイントクラウドセマンティックセグメンテーション(PCSS)は、ロボットシステムと自律運転における環境認識の基礎である。
既存の方法は、現実の摂動(例えば、雪、霧、雨)と敵の歪みに固有の脆弱性を批判的に見落としている。
この研究は、まず、現在のPCSS-UDAロバスト性を損なう2つの本質的な制限を特定する。
1) 強靭性指標による敵攻撃・破壊タイプに対するレジリエンスを定量化する頑健性評価モデル,2) 注意誘導重複抑制による識別構造を維持しつつ,双方向のドメインマッピングを可能にする非可逆的注意アライメントモジュール(IAAM) とからなる三部構成のフレームワークを提案する。
論文 参考訳(メタデータ) (2025-04-02T12:16:23Z) - Triadic-OCD: Asynchronous Online Change Detection with Provable Robustness, Optimality, and Convergence [2.1348070823841363]
本稿では,証明可能な堅牢性,証明可能な最適性,保証された収束性を備えた3進OCDフレームワークを開発する。
提案アルゴリズムは、完全に非同期な分散方式で実現でき、単一のサーバにデータを送信する必要がなくなる。
Triadic-OCDの非漸近収束特性は理論的に解析され、$epsilon$-Optimal点を達成するための複雑さが導出される。
論文 参考訳(メタデータ) (2024-05-03T10:10:11Z) - Activation Modulation and Recalibration Scheme for Weakly Supervised
Semantic Segmentation [24.08326440298189]
弱教師付きセマンティックセグメンテーションのための新しいアクティベーション変調と再校正手法を提案する。
PASCAL VOC 2012データセット上で,AMRが新たな最先端パフォーマンスを確立することを示す。
また,本手法はプラグアンドプレイであり,他の手法と組み合わせて性能向上を図ることが可能であることを実験により明らかにした。
論文 参考訳(メタデータ) (2021-12-16T16:26:14Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency [90.71745178767203]
ディープラーニングに基づく3Dオブジェクト検出は、大規模な自律走行データセットの出現によって、前例のない成功を収めた。
既存の3Dドメイン適応検出手法は、しばしばターゲットのドメインアノテーションへの事前アクセスを前提とします。
我々は、ソースドメインアノテーションのみを利用する、より現実的な、教師なしの3Dドメイン適応検出について研究する。
論文 参考訳(メタデータ) (2021-07-23T17:19:23Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
個人再識別のための教師なし領域適応手法を提案する。
実験結果から,ktCUDA法とSHRED法は,再同定性能において,+5.7 mAPの平均的改善を実現することがわかった。
論文 参考訳(メタデータ) (2020-01-14T17:43:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。