論文の概要: Suppressing Final Layer Hidden State Jumps in Transformer Pretraining
- arxiv url: http://arxiv.org/abs/2601.18302v1
- Date: Mon, 26 Jan 2026 09:30:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-27 15:23:08.7575
- Title: Suppressing Final Layer Hidden State Jumps in Transformer Pretraining
- Title(参考訳): 変圧器プレトレーニングにおける最終層隠れ状態ジャンプの抑制
- Authors: Keigo Shibata, Kazuki Yano, Ryosuke Takahashi, Jaesung Lee, Wataru Ikeda, Jun Suzuki,
- Abstract要約: トランスフォーマー言語モデルにおいて,入力と出力の隠れ状態ベクトル間の角距離における不均等な大きなジャンプについて検討する。
本研究では,このジャンプを事前トレーニング中にペナルティ化するジャンプ抑制正規化器 (JREG) を提案する。
提案手法を用いて訓練した3つのモデルサイズの実証評価により,モデルアーキテクチャを変更することなく,ベースラインと比較してタスク性能が改善された。
- 参考スコア(独自算出の注目度): 9.039600665615177
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper discusses the internal behavior of Transformer language models. Many recent pre-trained models have been reported to exhibit only slight changes in the angular distance between the input and output hidden state vectors in the middle Transformer layers, despite a disproportionately large ``jump'' in the angular distance occurring in or around the final Transformer layer. To characterize this, we first introduce a quantitative metric for the jump strength around the final layer, and then demonstrate its prevalence across many open-weight models, as well as its amplification throughout pre-training. Assuming such jumps indicate an undesirable property, we propose the jump-suppressing regularizer (JREG) which penalizes this jump during pre-training, thereby encouraging more balanced capability usage across the middle layers. Empirical evaluations of three model sizes of Llama-based models, trained with the proposed JREG method, reveal improved task performance compared to the baseline without altering the model architecture.
- Abstract(参考訳): 本稿ではトランスフォーマー言語モデルの内部挙動について述べる。
最近の多くの事前学習モデルでは、最終トランスフォーマー層またはその周辺で発生する角距離において、不均等に大きい ``jump'' にもかかわらず、入力と出力の隠れ状態ベクトルの間の角距離がわずかに変化することが報告されている。
これを特徴付けるために、まず最終層周辺の跳躍強度の定量的指標を導入し、その後、多くのオープンウェイトモデルにまたがって、事前学習を通してその増幅を実演する。
このようなジャンプが望ましくない性質を示すと仮定して,ジャンプ抑制正則化器 (JREG) を提案する。
提案手法を用いて訓練したLlama-based modelの3つのモデルサイズに関する実証評価により,モデルアーキテクチャを変更することなく,ベースラインと比較してタスク性能が改善された。
関連論文リスト
- ECG-Soup: Harnessing Multi-Layer Synergy for ECG Foundation Models [17.400439953606913]
心電図のためのトランスフォーマーベース基礎モデル(ECG)は、近年、多くの下流アプリケーションで顕著な性能を達成している。
ECGは心臓病の診断と治療に用いられる。
論文 参考訳(メタデータ) (2025-08-27T20:30:03Z) - Few-Shot Class Incremental Learning via Robust Transformer Approach [16.590193619691416]
Few-Shot Class-Incremental Learningは,データ不足の問題にモデルが直面しているクラス増分学習問題の拡張を提示する。
この問題は、最近のすべての研究が、準最適に実行される畳み込みニューラルネットワークの上に構築されているため、未解決の問題のままである。
本稿では,コンパクト畳み込み変換器を用いたロバスト変換器を提案する。
論文 参考訳(メタデータ) (2024-05-08T03:35:52Z) - The Fine Line: Navigating Large Language Model Pretraining with Down-streaming Capability Analysis [27.310894780313618]
本稿では,様々な事前学習中間点におけるモデル能力の総合的な比較を行う。
特定のダウンストリームメトリクスが、異なるサイズのモデルにまたがる同様のトレーニングダイナミクスを示すことを確認します。
コアの発見に加えて、AmberとOpenLLaMAを再現し、中間チェックポイントをリリースしました。
論文 参考訳(メタデータ) (2024-04-01T16:00:01Z) - Transformers Get Stable: An End-to-End Signal Propagation Theory for Language Models [6.809572275782338]
我々は,変換器モデルによる前方及び後方信号のモーメントを管理する統一信号伝搬理論を開発し,公式を提供する。
我々のフレームワークは、ハイアテンションスコアに関連する、消失/爆発の勾配、ランク崩壊、不安定性を理解し、緩和するために使用することができる。
論文 参考訳(メタデータ) (2024-03-14T17:59:14Z) - LaCo: Large Language Model Pruning via Layer Collapse [56.92068213969036]
トランスフォーマーに基づく大規模言語モデル(LLM)は、サイズ拡大の顕著な傾向を目撃している。
モデル量子化、知識蒸留、モデルプルーニングといった既存の手法は、様々な問題によって制約されている。
後部モデル層が前層に崩壊する「textitLayer Collapse (LaCo)」と呼ばれる簡潔な層構造プルーナーを提案する。
論文 参考訳(メタデータ) (2024-02-17T04:16:30Z) - Dynamic Layer Tying for Parameter-Efficient Transformers [65.268245109828]
トレーニング中にレイヤを選択し、それらを結びつけるために強化学習を採用しています。
これにより、重量共有が容易になり、トレーニング可能なパラメータの数を減らし、効果的な正規化技術としても機能する。
特に、トレーニング中のメモリ消費は、従来のトレーニング方法よりも1桁も少ない。
論文 参考訳(メタデータ) (2024-01-23T14:53:20Z) - Weight subcloning: direct initialization of transformers using larger
pretrained ones [42.056148990349094]
本稿では,事前学習されたモデルの知識をより小さな変種に伝達する手法を提案する。
ウェイト・サブクロニングは、より大きな事前訓練モデルからウェイトを初期化することにより、スケールダウン・トランスフォーマーのトレーニングを高速化する。
我々は、次のトークン予測のために設計された画像分類と言語モデルにおいて、視覚変換器の4倍高速なトレーニングを実現する。
論文 参考訳(メタデータ) (2023-12-14T19:08:56Z) - Emergent Agentic Transformer from Chain of Hindsight Experience [96.56164427726203]
簡単なトランスフォーマーベースモデルが時間差と模倣学習に基づくアプローチの両方と競合することを示す。
単純なトランスフォーマーベースのモデルが時間差と模倣学習ベースのアプローチの両方で競合するのはこれが初めてである。
論文 参考訳(メタデータ) (2023-05-26T00:43:02Z) - Latent Positional Information is in the Self-Attention Variance of
Transformer Language Models Without Positional Embeddings [68.61185138897312]
凍結変圧器言語モデルでは,自己意図の分散を縮小することにより,強い位置情報を符号化する。
本研究は, 位置埋め込みを廃止する決定を正当化し, トランスフォーマー言語モデルのより効率的な事前学習を容易にすることに役立つ。
論文 参考訳(メタデータ) (2023-05-23T01:03:40Z) - Scale Efficiently: Insights from Pre-training and Fine-tuning
Transformers [57.931830650323]
本稿では,事前学習および微調整型変圧器によるスケーリングの洞察について述べる。
モデルのサイズだけでなく、モデル形状が下流の微調整に重要であることを示す。
再設計したモデルにより、下流の微調整品質が向上する。
論文 参考訳(メタデータ) (2021-09-22T12:29:15Z) - Accelerating Training of Transformer-Based Language Models with
Progressive Layer Dropping [24.547833264405355]
提案手法は, サンプルあたり平均24%の時間短縮を実現し, プレトレーニングをベースラインの2.5倍の速度で行うことができる。
トレーニング済みのモデルでは,より高速ながら,強力な知識伝達能力を備え,ベースラインよりも高いGLUEスコアを達成できる。
論文 参考訳(メタデータ) (2020-10-26T06:50:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。