論文の概要: Collaborative Compressors in Distributed Mean Estimation with Limited Communication Budget
- arxiv url: http://arxiv.org/abs/2601.18950v1
- Date: Mon, 26 Jan 2026 20:41:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-28 15:26:51.065527
- Title: Collaborative Compressors in Distributed Mean Estimation with Limited Communication Budget
- Title(参考訳): 限られた通信予算を用いた分散平均推定における協調圧縮機
- Authors: Harsh Vardhan, Arya Mazumdar,
- Abstract要約: 本研究では,分散環境でのベクトル間の類似性を生かした4種類の協調圧縮手法を提案する。
我々のスキームは、実装が簡単で、計算的に効率的であり、通信に大きな節約をもたらす。
- 参考スコア(独自算出の注目度): 18.924296648372795
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Distributed high dimensional mean estimation is a common aggregation routine used often in distributed optimization methods. Most of these applications call for a communication-constrained setting where vectors, whose mean is to be estimated, have to be compressed before sharing. One could independently encode and decode these to achieve compression, but that overlooks the fact that these vectors are often close to each other. To exploit these similarities, recently Suresh et al., 2022, Jhunjhunwala et al., 2021, Jiang et al, 2023, proposed multiple correlation-aware compression schemes. However, in most cases, the correlations have to be known for these schemes to work. Moreover, a theoretical analysis of graceful degradation of these correlation-aware compression schemes with increasing dissimilarity is limited to only the $\ell_2$-error in the literature. In this paper, we propose four different collaborative compression schemes that agnostically exploit the similarities among vectors in a distributed setting. Our schemes are all simple to implement and computationally efficient, while resulting in big savings in communication. The analysis of our proposed schemes show how the $\ell_2$, $\ell_\infty$ and cosine estimation error varies with the degree of similarity among vectors.
- Abstract(参考訳): 分散高次元平均推定は、分散最適化法でよく用いられる共通集約ルーチンである。
これらのアプリケーションのほとんどは、平均推定されるベクトルが共有する前に圧縮されるような、通信に制約のある設定を要求している。
圧縮を達成するためにそれらを独立にエンコードしてデコードすることができるが、これらのベクトルが互いに近接しているという事実を見落としている。
これらの類似性を生かして、Suresh et al , 2022, Jhunjhunwala et al , 2021, Jiang et al, 2023 は複数の相関対応圧縮スキームを提案した。
しかし、ほとんどの場合、これらのスキームが機能するために相関関係が知られなければならない。
さらに、これらの相関対応圧縮スキームの相似性の増加に伴う優雅な劣化の理論解析は、文献における$\ell_2$-errorに限られる。
本稿では,分散環境におけるベクトル間の類似性を不可知的に活用する4種類の協調圧縮手法を提案する。
我々のスキームは、実装が簡単で、計算的に効率的であり、通信に大きな節約をもたらす。
提案手法の解析は,ベクトル間の類似度に応じて,$\ell_2$,$\ell_\infty$,cosine推定誤差がどのように変化するかを示す。
関連論文リスト
- Problem-dependent convergence bounds for randomized linear gradient compression [4.656302602746228]
目的関数に関連する収束に対する圧縮の影響について検討する。
圧縮が収束に与える影響は, 目的関数に付随する量化行列で表すことができる。
論文 参考訳(メタデータ) (2024-11-19T22:26:42Z) - Differential error feedback for communication-efficient decentralized learning [48.924131251745266]
本稿では,差分量子化と誤りフィードバックをブレンドする分散通信効率学習手法を提案する。
その結果,平均二乗誤差と平均ビットレートの両面において通信効率が安定であることが示唆された。
その結果、小さなステップサイズで有限ビットの場合には、圧縮がない場合に達成可能な性能が得られることが判明した。
論文 参考訳(メタデータ) (2024-06-26T15:11:26Z) - Shifted Compression Framework: Generalizations and Improvements [2.2147691173934967]
コミュニケーションは、大規模な機械学習モデルの分散トレーニングにおける重要なボトルネックの1つだ。
勾配やモデルのような交換された情報のロッシー圧縮は、この問題を緩和する最も効果的な手段の1つである。
論文 参考訳(メタデータ) (2022-06-21T15:00:04Z) - EF-BV: A Unified Theory of Error Feedback and Variance Reduction
Mechanisms for Biased and Unbiased Compression in Distributed Optimization [7.691755449724637]
分散最適化と学習では、異なるコンピュータユニット間の通信がボトルネックとなることが多い。
圧縮演算子には2つのクラスがあり、それを利用するアルゴリズムは別々である。
本稿では,特にDIANAとEF21を復元する新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-09T10:44:23Z) - Unified Multivariate Gaussian Mixture for Efficient Neural Image
Compression [151.3826781154146]
先行変数と超優先度を持つ潜伏変数は、変動画像圧縮において重要な問題である。
ベクトル化された視点で潜伏変数を観察する際、相関関係や相関関係は存在する。
当社のモデルでは、速度歪曲性能が向上し、圧縮速度が3.18倍に向上した。
論文 参考訳(メタデータ) (2022-03-21T11:44:17Z) - Distributed Methods with Absolute Compression and Error Compensation [1.52292571922932]
コミュニケーション圧縮はこの問題を緩和するための強力なアプローチである。
本稿では,任意のサンプリング戦略に対する絶対圧縮によるEC-SGDの解析を一般化する。
この設定では、以前知られていたものよりも私たちのレートが向上します。
論文 参考訳(メタデータ) (2022-03-04T15:41:14Z) - A Unified Framework for Multi-distribution Density Ratio Estimation [101.67420298343512]
バイナリ密度比推定(DRE)は多くの最先端の機械学習アルゴリズムの基礎を提供する。
ブレグマン最小化の発散の観点から一般的な枠組みを開発する。
我々のフレームワークはバイナリDREでそれらのフレームワークを厳格に一般化する手法に導かれることを示す。
論文 参考訳(メタデータ) (2021-12-07T01:23:20Z) - Acceleration in Distributed Optimization Under Similarity [72.54787082152278]
集中ノードを持たないエージェントネットワーク上での分散(強い凸)最適化問題について検討する。
$varepsilon$-solutionは$tildemathcalrhoObig(sqrtfracbeta/mu (1-)log1/varepsilonbig)$通信ステップ数で達成される。
この速度は、関心のクラスに適用される分散ゴシップ-アルゴリズムの、初めて(ポリログ因子まで)より低い複雑性の通信境界と一致する。
論文 参考訳(メタデータ) (2021-10-24T04:03:00Z) - Permutation Compressors for Provably Faster Distributed Nonconvex
Optimization [68.8204255655161]
本稿では,Gorbunov et al (2021) の MARINA 法が,理論的な通信複雑性の観点から最先端の手法とみなすことができることを示す。
MARINAの理論は、古典的な独立圧縮機設定を超えて、潜在的にエミュレートされた圧縮機の理論を支持するものである。
論文 参考訳(メタデータ) (2021-10-07T09:38:15Z) - On Biased Compression for Distributed Learning [55.89300593805943]
バイアス圧縮機が単一ノードと分散設定の両方において線形収束率をもたらすことを初めて示す。
理論的保証と実用性能を期待できる新しいバイアス圧縮機を提案する。
論文 参考訳(メタデータ) (2020-02-27T19:52:24Z) - Uncertainty Principle for Communication Compression in Distributed and
Federated Learning and the Search for an Optimal Compressor [5.09755285351264]
我々は,ベクトルのカシン表現にインスパイアされた非バイアス圧縮法を考察し,これをエムカシン圧縮(KC)と呼ぶ。
KC は、各ベクトルエントリごとに数ビットしか通信する必要のない状態であっても、明示的な公式を導出するエム次元独立分散境界を享受する。
論文 参考訳(メタデータ) (2020-02-20T17:20:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。