論文の概要: Pixel-Grounded Retrieval for Knowledgeable Large Multimodal Models
- arxiv url: http://arxiv.org/abs/2601.19060v1
- Date: Tue, 27 Jan 2026 00:46:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-28 15:26:51.106849
- Title: Pixel-Grounded Retrieval for Knowledgeable Large Multimodal Models
- Title(参考訳): 判読可能な大規模マルチモーダルモデルのための画素群検索法
- Authors: Jeonghwan Kim, Renjie Tao, Sanat Sharma, Jiaqi Wang, Kai Sun, Zhaojiang Lin, Seungwhan Moon, Lambert Mathias, Anuj Kumar, Heng Ji, Xin Luna Dong,
- Abstract要約: PixSearchは、地域レベルの認識と検索強化推論を統合する、エンドツーエンドのLMM(Large Multimodal Model)である。
エンコーディング中、PixSearchは検索をトリガーする検索>トークンを出力し、クエリのモダリティ(テキスト、画像、リージョン)を選択し、ビジュアルクエリとして直接機能するピクセルレベルのマスクを生成する。
エゴセントリックでエンティティ中心のVQAベンチマークでは、PixSearchは事実整合性と一般化を大幅に改善する。
- 参考スコア(独自算出の注目度): 58.46663983451155
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Visual Question Answering (VQA) often requires coupling fine-grained perception with factual knowledge beyond the input image. Prior multimodal Retrieval-Augmented Generation (MM-RAG) systems improve factual grounding but lack an internal policy for when and how to retrieve. We propose PixSearch, the first end-to-end Segmenting Large Multimodal Model (LMM) that unifies region-level perception and retrieval-augmented reasoning. During encoding, PixSearch emits <search> tokens to trigger retrieval, selects query modalities (text, image, or region), and generates pixel-level masks that directly serve as visual queries, eliminating the reliance on modular pipelines (detectors, segmenters, captioners, etc.). A two-stage supervised fine-tuning regimen with search-interleaved supervision teaches retrieval timing and query selection while preserving segmentation ability. On egocentric and entity-centric VQA benchmarks, PixSearch substantially improves factual consistency and generalization, yielding a 19.7% relative gain in accuracy on CRAG-MM compared to whole image retrieval, while retaining competitive reasoning performance on various VQA and text-only QA tasks.
- Abstract(参考訳): VQA (Visual Question Answering) はしばしば、入力画像以外の事実知識と微粒な認識を結合する必要がある。
MM-RAG(Multimodal Retrieval-Augmented Generation)システムは、現実的な基盤を改善するが、いつどのように回収するかという内部方針は欠如している。
我々は、地域レベルの認識と検索強化推論を統一する最初のエンドツーエンド分割型大規模マルチモーダルモデル(LMM)であるPixSearchを提案する。
エンコーディング中、PixSearchは<search>トークンを出力し、検索をトリガーし、クエリのモダリティ(テキスト、画像、リージョン)を選択し、ビジュアルクエリとして直接機能するピクセルレベルのマスクを生成し、モジュールパイプライン(検出器、セグメンタ、キャプタなど)への依存をなくす。
検索インターリーブされた教師付き2段階微調整レギュレータは、セグメンテーション能力を保ちながら、検索タイミングとクエリ選択を教える。
エゴセントリックでエンティティ中心のVQAベンチマークでは、PixSearchは実際の一貫性と一般化を大幅に改善し、画像検索全体と比較してCRAG-MMの精度は19.7%向上した。
関連論文リスト
- MMSearch-Plus: Benchmarking Provenance-Aware Search for Multimodal Browsing Agents [44.63565009665076]
マルチモーダル理解を強制する311タスクのベンチマークであるMMSearch-Plusを紹介する。
標準ブラウジングツールとset-of-mark(SoM)モジュールを備えたモデルに依存しないエージェントフレームワークを提供する。
SoMは、プロファイナンス対応のズーム・アンド・リトリーブを可能にし、マルチステップ推論におけるロバスト性を改善する。
論文 参考訳(メタデータ) (2025-08-29T09:58:27Z) - MMSearch-R1: Incentivizing LMMs to Search [49.889749277236376]
MMSearch-R1は,実世界のインターネット環境において,オンデマンドでマルチターン検索が可能な,初のエンドツーエンド強化学習フレームワークである。
本フレームワークは画像検索とテキスト検索の両方を統合し,検索ペナルティによる結果に基づく報酬によって,モデルがいつ,どのように呼び出すかの判断を可能にする。
論文 参考訳(メタデータ) (2025-06-25T17:59:42Z) - Divide by Question, Conquer by Agent: SPLIT-RAG with Question-Driven Graph Partitioning [62.640169289390535]
SPLIT-RAGは、質問駆動セマンティックグラフ分割と協調サブグラフ検索による制限に対処するマルチエージェントRAGフレームワークである。
革新的なフレームワークは、まずリンク情報のセマンティック分割を作成し、次にタイプ特化知識ベースを使用してマルチエージェントRAGを実現する。
属性対応グラフセグメンテーションは、知識グラフを意味的に一貫性のあるサブグラフに分割し、サブグラフが異なるクエリタイプと整合することを保証する。
階層的なマージモジュールは、論理的検証を通じて、部分グラフ由来の解答間の矛盾を解消する。
論文 参考訳(メタデータ) (2025-05-20T06:44:34Z) - OMGM: Orchestrate Multiple Granularities and Modalities for Efficient Multimodal Retrieval [31.69320295943039]
知識に基づく視覚質問応答(KB-VQA)に対処するための視覚言語検索拡張生成(RAG)が有効なアプローチとなっている
本稿では,複数の粒度とモダリティを調和させて有効性を向上する,粗大で微細なマルチステップ検索を特徴とするマルチモーダルRAGシステムを提案する。
論文 参考訳(メタデータ) (2025-05-10T14:24:41Z) - ImageScope: Unifying Language-Guided Image Retrieval via Large Multimodal Model Collective Reasoning [62.61187785810336]
ImageScopeは、トレーニング不要で3段階のフレームワークで、言語誘導の画像検索タスクを統合する。
最初の段階では,様々な意味的粒度のレベルにまたがって探索意図を合成することにより,フレームワークの堅牢性を向上させる。
第2段階と第3段階において、述語命題を局所的に検証し、一括評価を行うことにより、検索結果を反映する。
論文 参考訳(メタデータ) (2025-03-13T08:43:24Z) - Towards Text-Image Interleaved Retrieval [49.96332254241075]
テキスト画像検索(TIIR)タスクを導入し、クエリと文書をインターリーブしたテキスト画像シーケンスとする。
我々は、自然にインターリーブされたwikiHowチュートリアルに基づいてTIIRベンチマークを構築し、インターリーブされたクエリを生成するために特定のパイプラインを設計する。
異なる粒度で視覚トークンの数を圧縮する新しいMMEを提案する。
論文 参考訳(メタデータ) (2025-02-18T12:00:47Z) - Re-ranking the Context for Multimodal Retrieval Augmented Generation [28.63893944806149]
Retrieval-augmented Generation (RAG)は、文脈内で応答を生成するために外部知識を組み込むことで、大きな言語モデル(LLM)を強化する。
RAGシステムは固有の課題に直面している: (i) 検索プロセスはユーザクエリ(画像、文書など)への無関係なエントリを選択することができ、 (ii) 視覚言語モデルや GPT-4o のようなマルチモーダル言語モデルは、RAG出力を生成するためにこれらのエントリを処理する際に幻覚を与える。
より高度な関連性尺度を用いることで、知識ベースからより関連性の高い項目を選択して排除することにより、検索プロセスを強化することができることを示す。
論文 参考訳(メタデータ) (2025-01-08T18:58:22Z) - Multimodal Hypothetical Summary for Retrieval-based Multi-image Question Answering [14.63910474388089]
QAの学習目標が探索段階の最適化に失敗するため, 「検索・回答」パイプラインはカスケードエラーに悩まされることが多い。
本稿では,検索した情報をQAに効果的に導入し,参照するための新しい手法を提案する。
提案手法は,RETVQAの最先端手法よりも3.7%,CLIPよりも14.5%,絶対的な改善を実現している。
論文 参考訳(メタデータ) (2024-12-19T14:17:09Z) - End-to-end Knowledge Retrieval with Multi-modal Queries [50.01264794081951]
ReMuQは、テキストと画像のクエリからコンテンツを統合することで、大規模なコーパスから知識を取得するシステムを必要とする。
本稿では,入力テキストや画像を直接処理し,関連する知識をエンドツーエンドで検索する検索モデルReViz'を提案する。
ゼロショット設定下での2つのデータセットの検索において,優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-01T08:04:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。