論文の概要: A Multi-directional Meta-Learning Framework for Class-Generalizable Anomaly Detection
- arxiv url: http://arxiv.org/abs/2601.19833v1
- Date: Tue, 27 Jan 2026 17:39:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-28 15:26:51.422919
- Title: A Multi-directional Meta-Learning Framework for Class-Generalizable Anomaly Detection
- Title(参考訳): クラス一般化型異常検出のための多方向メタラーニングフレームワーク
- Authors: Padmaksha Roy, Lamine Mili, Almuatazbellah Boker,
- Abstract要約: 正規データの多様体を学習するための多方向メタ学習アルゴリズムを提案する。
内部レベルでは、モデルは通常のデータの多様体を学習することを目的としている。
外部レベルでは、モデルはいくつかの異常サンプルでメタチューニングされる。
- 参考スコア(独自算出の注目度): 2.893006778402251
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we address the problem of class-generalizable anomaly detection, where the objective is to develop a unified model by focusing our learning on the available normal data and a small amount of anomaly data in order to detect the completely unseen anomalies, also referred to as the out-of-distribution (OOD) classes. Adding to this challenge is the fact that the anomaly data is rare and costly to label. To achieve this, we propose a multidirectional meta-learning algorithm -- at the inner level, the model aims to learn the manifold of the normal data (representation); at the outer level, the model is meta-tuned with a few anomaly samples to maximize the softmax confidence margin between the normal and anomaly samples (decision surface calibration), treating normals as in-distribution (ID) and anomalies as out-of-distribution (OOD). By iteratively repeating this process over multiple episodes of predominantly normal and a small number of anomaly samples, we realize a multidirectional meta-learning framework. This two-level optimization, enhanced by multidirectional training, enables stronger generalization to unseen anomaly classes.
- Abstract(参考訳): 本稿では、クラス一般化可能な異常検出の問題に対処し、利用可能な正規データと少量の異常データに焦点をあてて統一モデルを構築し、完全に見えない異常(OOD)クラス(out-of-distriion(OED)クラス)を検出する。
この課題に加えるのは、異常なデータがラベル付けするのに稀でコストがかかるという事実だ。
そこで本研究では,本モデルの内部レベルでは,正規データの多様体(表現)を学習することを目的とした多方向性メタラーニングアルゴリズムを提案する。外層では,正規および異常サンプル間のソフトマックス信頼率を最大化するために,数個の異常サンプルを用いてメタチューニングを行い,正規を分布内(ID)として,異常を分布外(OOD)として扱う。
この過程を、主に正常な複数のエピソードと少数の異常サンプルに繰り返し繰り返すことにより、多方向メタラーニングフレームワークを実現する。
この2段階の最適化は、多方向トレーニングによって強化され、より強力な一般化を可能にし、異常なクラスを発見できないようにする。
関連論文リスト
- Two Is Better Than One: Aligned Representation Pairs for Anomaly Detection [56.57122939745213]
異常検出は、標準から逸脱するサンプルを特定することに焦点を当てる。
近年の自己教師型手法は, 異常に関する事前知識を用いて, トレーニング中に合成外れ値を生成することによって, それらの表現をうまく学習している。
この制限は、通常のサンプルにおける対称性に関する事前の知識を活用して、異なるコンテキストでデータを観測する、新しいアプローチであるCon$で対処する。
論文 参考訳(メタデータ) (2024-05-29T07:59:06Z) - Anomaly Heterogeneity Learning for Open-set Supervised Anomaly Detection [26.08881235151695]
オープンセット型教師付き異常検出(OSAD)は、トレーニング中に見られたいくつかの異常クラスのサンプルを利用して、見えない異常を検出することを目的としている。
異種不均一分布の多様集合をシミュレートする新しいアプローチ,すなわちAHL(Anomaly Heterogeneity Learning)を導入する。
AHL can 1) は, 目に見える異常や見えない異常の検出において, 最先端のOSADモデルを大幅に強化し, 2) 新たな領域の異常を効果的に一般化することを示した。
論文 参考訳(メタデータ) (2023-10-19T14:47:11Z) - SaliencyCut: Augmenting Plausible Anomalies for Anomaly Detection [24.43321988051129]
そこで本稿では,SaliencyCutという新たなデータ拡張手法を提案する。
次に、各サンプルから微細な異常特徴を抽出し評価するために、異常学習ヘッドにパッチワイド残余モジュールを新規に設計する。
論文 参考訳(メタデータ) (2023-06-14T08:55:36Z) - Diversity-Measurable Anomaly Detection [106.07413438216416]
本稿では,再構成の多様性を高めるため,DMAD(Diversity-Measurable Anomaly Detection)フレームワークを提案する。
PDMは基本的に、変形を埋め込みから分離し、最終的な異常スコアをより信頼性を高める。
論文 参考訳(メタデータ) (2023-03-09T05:52:42Z) - Prototypical Residual Networks for Anomaly Detection and Localization [80.5730594002466]
本稿では,PRN(Prototypeal Residual Network)というフレームワークを提案する。
PRNは、異常領域の分割マップを正確に再構築するために、異常領域と正常パターンの間の様々なスケールとサイズの特徴的残差を学習する。
異常を拡大・多様化するために,見かけの相違と外観の相違を考慮に入れた様々な異常発生戦略を提示する。
論文 参考訳(メタデータ) (2022-12-05T05:03:46Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
本稿では,一部のラベル付き異常事例と大規模ラベルなしデータセットを用いた異常検出の問題点について考察する。
既存の関連手法は、通常、一連の異常にまたがらない限られた異常例にのみ適合するか、ラベルのないデータから教師なしの学習を進めるかのいずれかである。
そこで本研究では,ラベル付きおよびラベルなし両方の異常の検出をエンドツーエンドに最適化する,深層強化学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-15T03:05:39Z) - Deep Weakly-supervised Anomaly Detection [118.55172352231381]
ペアワイズ関係予測ネットワーク(PReNet)は、ペアワイズ関係の特徴と異常スコアを学習する。
PReNetは、学習したペアの異常パターンに適合する見知らぬ異常を検出できる。
12の実世界のデータセットに対する実証的な結果から、PReNetは目に見えない異常や異常を検知する9つの競合する手法を著しく上回っている。
論文 参考訳(メタデータ) (2019-10-30T00:40:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。