論文の概要: On the Effectiveness of LLM-Specific Fine-Tuning for Detecting AI-Generated Text
- arxiv url: http://arxiv.org/abs/2601.20006v1
- Date: Tue, 27 Jan 2026 19:22:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-29 15:46:06.634269
- Title: On the Effectiveness of LLM-Specific Fine-Tuning for Detecting AI-Generated Text
- Title(参考訳): AI生成テキスト検出におけるLLM特化ファインチューニングの有効性について
- Authors: Michał Gromadzki, Anna Wróblewska, Agnieszka Kaliska,
- Abstract要約: 本稿では,大規模コーパスと新たな学習戦略に基づくAIによるテキスト検出手法を提案する。
我々は,複数のジャンルにまたがる1ビリオン・トーケン・コーパスと,AI生成テキストの1.9ビリオン・トーケン・コーパスを紹介する。
我々の最高の微調整検出器は99.6%のトークンレベルの精度を達成し、既存のオープンソースベースラインを大幅に上回っている。
- 参考スコア(独自算出の注目度): 1.8428580623654867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid progress of large language models has enabled the generation of text that closely resembles human writing, creating challenges for authenticity verification in education, publishing, and digital security. Detecting AI-generated text has therefore become a crucial technical and ethical issue. This paper presents a comprehensive study of AI-generated text detection based on large-scale corpora and novel training strategies. We introduce a 1-billion-token corpus of human-authored texts spanning multiple genres and a 1.9-billion-token corpus of AI-generated texts produced by prompting a variety of LLMs across diverse domains. Using these resources, we develop and evaluate numerous detection models and propose two novel training paradigms: Per LLM and Per LLM family fine-tuning. Across a 100-million-token benchmark covering 21 large language models, our best fine-tuned detector achieves up to $99.6\%$ token-level accuracy, substantially outperforming existing open-source baselines.
- Abstract(参考訳): 大規模言語モデルの急速な進歩は、人間の文章によく似たテキストの生成を可能にし、教育、出版、デジタルセキュリティにおける真正性検証の課題を生み出した。
そのため、AI生成テキストの検出は、重要な技術的および倫理的問題となっている。
本稿では,大規模コーパスと新たな学習戦略に基づくAI生成テキストの検出に関する総合的研究を行う。
本稿では,複数のジャンルにまたがる1ビリオン・トーケン・コーパスと,多分野にまたがる多種多様なLLMを推し進めたAI生成テキストの1.9ビリオン・トーケン・コーパスを紹介する。
これらの資源を用いて、多数の検出モデルを開発し評価し、Per LLMとPer LLMファミリーファインチューニングという2つの新しい訓練パラダイムを提案する。
21の大規模言語モデルをカバーする100万のベンチマークで、最高の微調整検出器は99.6\%のトークンレベルの精度を達成し、既存のオープンソースベースラインを大幅に上回っている。
関連論文リスト
- Human Texts Are Outliers: Detecting LLM-generated Texts via Out-of-distribution Detection [71.59834293521074]
我々は,人間によるテキストと機械によるテキストを区別する枠組みを開発した。
提案手法は,DeepFakeデータセット上で98.3%のAUROCとAUPRを8.9%のFPR95で達成する。
コード、事前トレーニングされたウェイト、デモがリリースされる。
論文 参考訳(メタデータ) (2025-10-07T08:14:45Z) - Robust and Fine-Grained Detection of AI Generated Texts [0.29015183529168825]
既存のシステムは、短いテキストよりもAI生成したコンテンツを正確に識別するのに苦労することが多い。
本稿では,トークン分類のタスクのために構築されたモデルについて紹介する。
また,23言語以上のプロプライエタリなLLMが主に共著する2.4M以上のテキストのデータセットも導入した。
論文 参考訳(メタデータ) (2025-04-16T10:29:30Z) - GigaCheck: Detecting LLM-generated Content [72.27323884094953]
本稿では,GigaCheckを提案することによって生成したテキスト検出の課題について検討する。
本研究は,LLM生成テキストとLLM生成テキストを区別する手法と,Human-Machine協調テキストにおけるLLM生成間隔を検出する手法について検討する。
具体的には,テキスト内のAI生成間隔をローカライズするために,コンピュータビジョンから適応したDETRのような検出モデルと組み合わせて,微調整の汎用LLMを用いる。
論文 参考訳(メタデータ) (2024-10-31T08:30:55Z) - Unveiling Large Language Models Generated Texts: A Multi-Level Fine-Grained Detection Framework [9.976099891796784]
大型言語モデル (LLM) は文法の修正、内容の拡張、文体の改良によって人間の書き方を変えてきた。
既存の検出方法は、主に単一機能分析とバイナリ分類に依存しているが、学術的文脈においてLLM生成テキストを効果的に識別することができないことが多い。
低レベル構造, 高レベル意味, 深層言語的特徴を統合することで, LLM生成テキストを検出する多レベルきめ細粒度検出フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-18T07:25:00Z) - Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
既存のゼロショット検出器は主に、現実世界のドメインシフトに弱いトークンレベルの分布に焦点を当てている。
本稿では,イベント遷移などの抽象的要素を機械対人文検出の鍵となる要因として組み込んだ,より堅牢な手法を提案する。
論文 参考訳(メタデータ) (2024-10-04T18:42:09Z) - Towards Reliable Detection of LLM-Generated Texts: A Comprehensive Evaluation Framework with CUDRT [9.682499180341273]
大規模言語モデル(LLM)はテキスト生成が大幅に進歩しているが、その出力の人間的な品質は大きな課題を呈している。
中国語と英語の総合的な評価フレームワークとバイリンガルベンチマークであるCUDRTを提案する。
このフレームワークは、スケーラブルで再現可能な実験をサポートし、運用の多様性、多言語トレーニングセット、LLMアーキテクチャが検出性能に与える影響を分析する。
論文 参考訳(メタデータ) (2024-06-13T12:43:40Z) - ToBlend: Token-Level Blending With an Ensemble of LLMs to Attack AI-Generated Text Detection [6.27025292177391]
ToBlendはトークンレベルのアンサンブルテキスト生成手法であり、現在のAIコンテンツ検出アプローチの堅牢性に挑戦する。
ToBlendは、主要なAIコンテンツ検出手法の性能を著しく低下させる。
論文 参考訳(メタデータ) (2024-02-17T02:25:57Z) - MAGE: Machine-generated Text Detection in the Wild [82.70561073277801]
大規模言語モデル(LLM)は人間レベルのテキスト生成を実現し、効果的なAI生成テキスト検出の必要性を強調している。
我々は、異なるLLMによって生成される多様な人文やテキストからテキストを収集することで、包括的なテストベッドを構築する。
問題にもかかわらず、トップパフォーマンス検出器は、新しいLCMによって生成された86.54%のドメイン外のテキストを識別することができ、アプリケーションシナリオの実現可能性を示している。
論文 参考訳(メタデータ) (2023-05-22T17:13:29Z) - Progressive Generation of Long Text with Pretrained Language Models [83.62523163717448]
GPT-2のような大量のテキストコーパスで事前訓練された大規模言語モデル(LM)は、強力なオープンドメインテキストジェネレータである。
このようなモデルが、特に小さなコーパス上のターゲットドメインに微調整された場合、コヒーレントな長いテキストパスを生成することは依然として困難である。
本稿では,低解像度から高解像度の画像に触発されて,テキストを段階的に生成する簡易かつ効果的な方法を提案する。
論文 参考訳(メタデータ) (2020-06-28T21:23:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。