論文の概要: BLENDER: Blended Text Embeddings and Diffusion Residuals for Intra-Class Image Synthesis in Deep Metric Learning
- arxiv url: http://arxiv.org/abs/2601.20246v1
- Date: Wed, 28 Jan 2026 04:44:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-29 15:46:06.770264
- Title: BLENDER: Blended Text Embeddings and Diffusion Residuals for Intra-Class Image Synthesis in Deep Metric Learning
- Title(参考訳): BLENDER:Deep Metric Learningにおけるクラス内画像合成のためのブレンドテキスト埋め込みと拡散残差
- Authors: Jan Niklas Kolf, Ozan Tezcan, Justin Theiss, Hyung Jun Kim, Wentao Bao, Bhargav Bhushanam, Khushi Gupta, Arun Kejariwal, Naser Damer, Fadi Boutros,
- Abstract要約: BLenDeRはDMLのクラス内多様性を高めるために設計された拡散サンプリング手法である。
標準的なDMLベンチマークの実験では、BLenDeRは最先端のベースラインを一貫して上回っている。
- 参考スコア(独自算出の注目度): 25.580584318000188
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rise of Deep Generative Models (DGM) has enabled the generation of high-quality synthetic data. When used to augment authentic data in Deep Metric Learning (DML), these synthetic samples enhance intra-class diversity and improve the performance of downstream DML tasks. We introduce BLenDeR, a diffusion sampling method designed to increase intra-class diversity for DML in a controllable way by leveraging set-theory inspired union and intersection operations on denoising residuals. The union operation encourages any attribute present across multiple prompts, while the intersection extracts the common direction through a principal component surrogate. These operations enable controlled synthesis of diverse attribute combinations within each class, addressing key limitations of existing generative approaches. Experiments on standard DML benchmarks demonstrate that BLenDeR consistently outperforms state-of-the-art baselines across multiple datasets and backbones. Specifically, BLenDeR achieves 3.7% increase in Recall@1 on CUB-200 and a 1.8% increase on Cars-196, compared to state-of-the-art baselines under standard experimental settings.
- Abstract(参考訳): 深部生成モデル(DGM)の台頭により、高品質な合成データの生成が可能になった。
ディープ・メトリック・ラーニング(DML)における認証データの拡張に使用すると、これらの合成サンプルはクラス内の多様性を高め、下流DMLタスクの性能を向上させる。
本稿では,DMLのクラス内多様性を制御可能な方法で向上する拡散サンプリング手法であるBLenDeRを紹介する。
ユニオン演算は複数のプロンプトにまたがって存在する属性を奨励し、交叉は主成分代理を通して共通方向を抽出する。
これらの操作は、既存の生成的アプローチの重要な制限に対処するため、各クラス内で様々な属性の組み合わせを制御できる。
標準的なDMLベンチマークの実験では、BLenDeRは複数のデータセットとバックボーンで、最先端のベースラインを一貫して上回っている。
具体的には、BLenDeRはCUB-200ではRecall@1が3.7%増加し、Cars-196では1.8%増加した。
関連論文リスト
- Modality-Specific Enhancement and Complementary Fusion for Semi-Supervised Multi-Modal Brain Tumor Segmentation [6.302779966909783]
医用画像セグメンテーションのための新しい半教師付きマルチモーダルフレームワークを提案する。
モダリティ固有のエンハンシングモジュール(MEM)を導入し、各モダリティに意味的なユニークな手がかりを強化する。
また,学習可能な相補的情報融合(CIF)モジュールを導入し,モダリティ間の相補的知識を適応的に交換する。
論文 参考訳(メタデータ) (2025-12-10T16:15:17Z) - Improving Deepfake Detection with Reinforcement Learning-Based Adaptive Data Augmentation [60.04281435591454]
CRDA(Curriculum Reinforcement-Learning Data Augmentation)は、マルチドメインの偽造機能を段階的にマスターするための検出器を導く新しいフレームワークである。
私たちのアプローチの中心は、強化学習と因果推論を統合することです。
提案手法は検出器の一般化性を大幅に向上し,複数のクロスドメインデータセット間でSOTA法より優れている。
論文 参考訳(メタデータ) (2025-11-10T12:45:52Z) - DiffuCoder: Understanding and Improving Masked Diffusion Models for Code Generation [68.19756761027351]
拡散大言語モデル(dLLM)は自己回帰(AR)モデルの魅力的な代替品である。
本研究は,それらの認知過程と強化学習手法について考察する。
我々の研究は、dLLM生成のメカニズムについて深い洞察を与え、効果的な拡散ネイティブなRLトレーニングフレームワークを提供します。
論文 参考訳(メタデータ) (2025-06-25T17:35:47Z) - Unlocking Potential Binders: Multimodal Pretraining DEL-Fusion for Denoising DNA-Encoded Libraries [51.72836644350993]
マルチモーダルプレトレーニング DEL-Fusion Model (MPDF)
我々は,異なる複合表現とそれらのテキスト記述の対比対象を適用した事前学習タスクを開発する。
本稿では, 原子, 分子, 分子レベルでの複合情報をアマルガメートする新しいDEL融合フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-07T17:32:21Z) - A Framework for Fine-Tuning LLMs using Heterogeneous Feedback [69.51729152929413]
ヘテロジニアスフィードバックを用いた大規模言語モデル(LLM)の微調整フレームワークを提案する。
まず、不均一なフィードバックデータをSFTやRLHFなどの手法と互換性のある単一の監視形式にまとめる。
次に、この統合されたフィードバックデータセットから、性能向上を得るために高品質で多様なサブセットを抽出する。
論文 参考訳(メタデータ) (2024-08-05T23:20:32Z) - Detail Reinforcement Diffusion Model: Augmentation Fine-Grained Visual Categorization in Few-Shot Conditions [11.121652649243119]
拡散モデルは、データ生成において顕著な多様性のため、データ拡張において広く採用されている。
詳細強化拡散モデル(DRDM)と呼ばれる新しい手法を提案する。
大規模モデルの豊富な知識を微粒化に活用し、識別的意味的組換え(DSR)と空間的知識参照(SKR)の2つの重要な構成要素を含む。
論文 参考訳(メタデータ) (2023-09-15T01:28:59Z) - LatentAugment: Data Augmentation via Guided Manipulation of GAN's Latent
Space [2.2997492209809964]
Geneversarative Adrial Networks (GAN) は、合成サンプルを生成してデータセットに追加情報をアンロックすることができる。
GANは、高品質なサンプルを迅速に生成するが、モードカバレッジが劣り、DAアプリケーションへの採用が制限される。
本稿では,GANの多様性の低いDA戦略であるLatentAugmentを提案する。
論文 参考訳(メタデータ) (2023-07-21T06:17:09Z) - Self-distillation with Online Diffusion on Batch Manifolds Improves Deep
Metric Learning [23.974500845619175]
DMLのためのオンラインバッチ拡散に基づく自己蒸留(OBD-SD)を提案する。
まず, モデル自体から知識を段階的に蒸留する, 単純だが効果的なプログレッシブ自己蒸留法を提案する。
次に, PSD を Online Batch Diffusion Process (OBDP) で拡張し, 各バッチにおける多様体の局所的幾何学的構造を捉える。
論文 参考訳(メタデータ) (2022-11-14T17:38:07Z) - GSMFlow: Generation Shifts Mitigating Flow for Generalized Zero-Shot
Learning [55.79997930181418]
Generalized Zero-Shot Learningは、目に見えないクラスから見えないクラスに意味的な知識を移すことで、目に見えないクラスと見えないクラスの両方から画像を認識することを目的としている。
生成モデルの利点を生かして、見学したクラスから学んだ知識に基づいて、現実的な見知らぬサンプルを幻覚させることは、有望な解決策である。
本研究では,複数の条件付きアフィン結合層からなるフローベース生成フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-05T04:04:37Z) - DML-GANR: Deep Metric Learning With Generative Adversarial Network
Regularization for High Spatial Resolution Remote Sensing Image Retrieval [9.423185775609426]
我々は,HSR-RSI検索のためのDML-GANR(Generative Adversarial Network regularization)を用いたディープメトリック学習手法を開発した。
3つのデータセットの実験結果から,HSR-RSI検索における最先端技術よりもDML-GANRの方が優れた性能を示した。
論文 参考訳(メタデータ) (2020-10-07T02:26:03Z) - Adversarial Feature Hallucination Networks for Few-Shot Learning [84.31660118264514]
Adversarial Feature Hallucination Networks (AFHN) は条件付き Wasserstein Generative Adversarial Network (cWGAN) に基づいている。
合成された特徴の識別性と多様性を促進するために、2つの新規レギュレータがAFHNに組み込まれている。
論文 参考訳(メタデータ) (2020-03-30T02:43:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。