論文の概要: Reinforcement Learning from Meta-Evaluation: Aligning Language Models Without Ground-Truth Labels
- arxiv url: http://arxiv.org/abs/2601.21268v1
- Date: Thu, 29 Jan 2026 05:02:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-30 16:22:49.584793
- Title: Reinforcement Learning from Meta-Evaluation: Aligning Language Models Without Ground-Truth Labels
- Title(参考訳): メタ評価による強化学習:基盤構造ラベルを含まない言語モデルの調整
- Authors: Micah Rentschler, Jesse Roberts,
- Abstract要約: メタ評価(RLME)による強化学習
本稿では,自然言語メタクエストに対する評価者の回答から得られる報酬を用いて,ジェネレータを最適化するRLMEを紹介する。
実験の結果,RLMEはラベルベーストレーニングに匹敵する精度とサンプル効率が得られた。
- 参考スコア(独自算出の注目度): 2.757286637005573
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most reinforcement learning (RL) methods for training large language models (LLMs) require ground-truth labels or task-specific verifiers, limiting scalability when correctness is ambiguous or expensive to obtain. We introduce Reinforcement Learning from Meta-Evaluation (RLME), which optimizes a generator using reward derived from an evaluator's answers to natural-language meta-questions (e.g., "Is the answer correct?" or "Is the reasoning logically consistent?"). RLME treats the evaluator's probability of a positive judgment as a reward and updates the generator via group-relative policy optimization, enabling learning without labels. Across a suite of experiments, we show that RLME achieves accuracy and sample efficiency comparable to label-based training, enables controllable trade-offs among multiple objectives, steers models toward reliable reasoning patterns rather than post-hoc rationalization, and generalizes to open-domain settings where ground-truth labels are unavailable, broadening the domains in which LLMs may be trained with RL.
- Abstract(参考訳): 大規模言語モデル (LLM) を訓練するためのほとんどの強化学習 (RL) 手法は、真正性が曖昧で入手に費用がかかる場合のスケーラビリティを制限し、基調ラベルやタスク固有の検証器を必要とする。
メタ評価からの強化学習(Reinforcement Learning from Meta-Evaluation, RLME)を導入する。これは,評価者の回答から自然言語メタクエストへの報酬(例:「答えは正しいのか?」あるいは「論理的に一貫性があるのか?」)を用いて,ジェネレータを最適化する。
RLMEは、肯定的な判断の確率を報酬として扱い、グループ相対的なポリシー最適化を通じてジェネレータを更新し、ラベルなしでの学習を可能にする。
一連の実験において,RLMEはラベルベーストレーニングに匹敵する精度とサンプル効率を達成し,複数目的間の制御可能なトレードオフを実現し,ホック後の合理化よりも信頼性の高い推論パターンを導出し,地中ラベルが利用できないオープンドメイン設定に一般化し,LLMをRLでトレーニング可能な領域を広げる。
関連論文リスト
- Every Question Has Its Own Value: Reinforcement Learning with Explicit Human Values [53.72318444646282]
RLEV(Reinforcement Learning with Explicit Human Values)を提案する。
RLEVは、Large Language Model (LLM) 最適化を直接、定量化された人間の値信号と整合させる。
RLEVは、複数のRLアルゴリズムとモデルスケールで、精度のみのベースラインを一貫して上回ることを示す。
論文 参考訳(メタデータ) (2025-10-23T04:15:22Z) - CAPO: Towards Enhancing LLM Reasoning through Generative Credit Assignment [44.33395106709674]
RLVR(Reinforcement Learning with Verifiable Rewards)は、ルールベースのバイナリフィードバックを使用することで、LLM(Large Language Models)の推論能力を改善した。
現在のRLVRメソッドは、通常、すべてのトークンに同じ報酬を割り当てる。
この粗い粒度のフィードバックは、正確なクレジット割り当てを妨げ、モデルがどの推論ステップが成功または失敗につながるかを特定するのが難しくなる。
論文 参考訳(メタデータ) (2025-08-04T11:06:08Z) - Revisiting LLM Reasoning via Information Bottleneck [57.519119962528166]
大規模言語モデル(LLM)は、最近、検証可能な報酬付き強化学習(RLVR)を通じて推論能力の顕著な進歩を示した。
本稿では,情報ボトルネック(IB)の原理に基づくLLM推論の理論的特徴について述べる。
IB対応推論最適化(IBRO)を提案する。
論文 参考訳(メタデータ) (2025-07-24T13:14:25Z) - Do Theory of Mind Benchmarks Need Explicit Human-like Reasoning in Language Models? [14.29992535286614]
心の理論 (Theory of Mind, ToM) とは、心の状態を他人に説明できる能力である。
大規模言語モデルの最近の進歩は、ToMベンチマークで有望なパフォーマンスを示している。
これらのベンチマークは、明示的なヒューマンライクな推論プロセスを必要とするのか、それとも、代替戦略によってモデルが成功するのか?
論文 参考訳(メタデータ) (2025-04-02T12:58:42Z) - MoRE-LLM: Mixture of Rule Experts Guided by a Large Language Model [54.14155564592936]
大規模言語モデル(MoRE-LLM)によるルールエキスパートの混合を提案する。
MoRE-LLMは、トレーニング中の局所的なルールベースのサロゲートの発見と、それらの分類タスクの利用を操縦する。
LLMはルールを修正・コンテキスト化することで、ルールのドメイン知識の整合性を高める役割を担います。
論文 参考訳(メタデータ) (2025-03-26T11:09:21Z) - VinePPO: Refining Credit Assignment in RL Training of LLMs [66.80143024475635]
我々は,言語環境の柔軟性を利用してモンテカルロをベースとした推定値を計算する,簡単なアプローチであるVinePPOを提案する。
本手法は,MATHおよびGSM8Kデータセット間のPPOおよび他のベースラインをウォールクロック時間以下で連続的に上回る。
論文 参考訳(メタデータ) (2024-10-02T15:49:30Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
オープンエンド生成タスクをトークンレベルの予測タスクに再構成する。
我々はLSMに答えを自己評価するように指示する。
自己評価に基づくスコアリング手法をベンチマークする。
論文 参考訳(メタデータ) (2023-12-14T19:09:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。