論文の概要: Distributionally Robust Classification for Multi-source Unsupervised Domain Adaptation
- arxiv url: http://arxiv.org/abs/2601.21315v1
- Date: Thu, 29 Jan 2026 06:23:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-30 16:22:49.61718
- Title: Distributionally Robust Classification for Multi-source Unsupervised Domain Adaptation
- Title(参考訳): マルチソース非教師付きドメイン適応のための分布ロバスト分類
- Authors: Seonghwi Kim, Sung Ho Jo, Wooseok Ha, Minwoo Chae,
- Abstract要約: 教師なし領域適応(Unsupervised domain adapt, UDA)は、トレーニングデータ(ソースデータ)の分布がテストデータ(ターゲットデータ)と異なる場合の統計的学習問題である。
既存のUDA手法とシームレスに統合可能な効率的な学習アルゴリズムを開発した。
- 参考スコア(独自算出の注目度): 7.009073774602386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised domain adaptation (UDA) is a statistical learning problem when the distribution of training (source) data is different from that of test (target) data. In this setting, one has access to labeled data only from the source domain and unlabeled data from the target domain. The central objective is to leverage the source data and the unlabeled target data to build models that generalize to the target domain. Despite its potential, existing UDA approaches often struggle in practice, particularly in scenarios where the target domain offers only limited unlabeled data or spurious correlations dominate the source domain. To address these challenges, we propose a novel distributionally robust learning framework that models uncertainty in both the covariate distribution and the conditional label distribution. Our approach is motivated by the multi-source domain adaptation setting but is also directly applicable to the single-source scenario, making it versatile in practice. We develop an efficient learning algorithm that can be seamlessly integrated with existing UDA methods. Extensive experiments under various distribution shift scenarios show that our method consistently outperforms strong baselines, especially when target data are extremely scarce.
- Abstract(参考訳): 教師なし領域適応(Unsupervised domain adapt, UDA)は、トレーニングデータ(ソースデータ)の分布がテストデータ(ターゲットデータ)と異なる場合の統計的学習問題である。
この設定では、ソースドメインからのみラベル付きデータにアクセスでき、ターゲットドメインからラベルなしデータにアクセスすることができる。
中心的な目的は、ソースデータとラベルなしのターゲットデータを活用して、ターゲットドメインに一般化するモデルを構築することである。
その可能性にもかかわらず、既存のUDAアプローチは、特にターゲットドメインが限られたラベルのないデータしか提供していない場合や、ソースドメインを支配している場合において、実際に苦労することが多い。
これらの課題に対処するために,共変量分布と条件付きラベル分布の両面での不確かさをモデル化する,分布に頑健な学習フレームワークを提案する。
このアプローチはマルチソースのドメイン適応設定によって動機付けられますが、シングルソースのシナリオにも直接適用可能です。
既存のUDA手法とシームレスに統合可能な効率的な学習アルゴリズムを開発した。
種々の分散シフトシナリオ下での大規模な実験により,本手法は強いベースライン,特にターゲットデータが極めて少ない場合に,一貫して優れることが示された。
関連論文リスト
- Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
ドメイン適応は、ラベル付きソースドメインから学んだ知識を、データ分散が異なるラベル付きターゲットドメインに転送することを目的としています。
近年,ソースフリードメイン適応 (Source-Free Domain Adaptation, SFDA) が注目されている。
本研究では,SFDA-DEと呼ばれる新しいフレームワークを提案し,ソース分布推定によるSFDAタスクに対処する。
論文 参考訳(メタデータ) (2022-04-24T12:22:19Z) - UMAD: Universal Model Adaptation under Domain and Category Shift [138.12678159620248]
Universal Model Adaptation (UMAD)フレームワークは、ソースデータにアクセスせずに両方のUDAシナリオを処理する。
未知のサンプルと未知のサンプルを識別するのに役立つ情報整合性スコアを開発した。
オープンセットおよびオープンパーティルセット UDA シナリオの実験では、UMAD が最先端のデータ依存手法に匹敵する性能を示した。
論文 参考訳(メタデータ) (2021-12-16T01:22:59Z) - Learning Invariant Representation with Consistency and Diversity for
Semi-supervised Source Hypothesis Transfer [46.68586555288172]
本稿では,SSHT(Semi-supervised Source hypothesis Transfer)という新たなタスクを提案する。
本研究では、ランダムに拡張された2つの未ラベルデータ間の予測整合性を容易にし、SSHTの簡易かつ効果的なフレームワークである一貫性と多様性の学習(CDL)を提案する。
実験の結果,本手法は,DomainNet,Office-Home,Office-31データセット上で,既存のSSDA手法や教師なしモデル適応手法よりも優れていた。
論文 参考訳(メタデータ) (2021-07-07T04:14:24Z) - Multi-Source domain adaptation via supervised contrastive learning and
confident consistency regularization [0.0]
Multi-Source Unsupervised Domain Adaptation (multi-source UDA)は、複数のラベル付きソースドメインからモデルを学習することを目的としている。
本稿では,この制限に対処するマルチソースUDAに対して,コントラスト型マルチソースドメイン適応(CMSDA)を提案する。
論文 参考訳(メタデータ) (2021-06-30T14:39:15Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA)は、ラベル付きデータが利用できないターゲットドメインでモデルを学習する問題を指す。
本稿では,視覚データセット中の潜在ドメインを自動的に発見することにより,udaの問題に対処する新しい深層アーキテクチャを提案する。
提案手法を公開ベンチマークで評価し,最先端のドメイン適応手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-03-25T14:33:33Z) - Open-Set Hypothesis Transfer with Semantic Consistency [99.83813484934177]
本稿では,対象データの変換における意味的一貫性に着目した手法を提案する。
本モデルはまず,自信ある予測を発見し,擬似ラベルを用いた分類を行う。
その結果、ラベルなしデータは、ソースクラスまたは未知のクラスに一致した識別クラスに分類される。
論文 参考訳(メタデータ) (2020-10-01T10:44:31Z) - Unsupervised Model Adaptation for Continual Semantic Segmentation [15.820660013260584]
本研究では,ラベル付きソースドメインを用いて訓練されたセマンティックセグメンテーションモデルを,ラベル付きターゲットドメインで適切に一般化するアルゴリズムを開発した。
我々は,アルゴリズムが有効である条件を理論的に分析し,説明する。
ベンチマーク適応タスクの実験では, 共同UDA手法と比較して, 競争性能が向上することを示した。
論文 参考訳(メタデータ) (2020-09-26T04:55:50Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptUDA (UDA) は、ラベル付きソースデータセットから学んだ知識を活用して、新しいラベル付きドメインで同様のタスクを解決することを目的としている。
従来のUDAメソッドは、モデルに適応するためには、通常、ソースデータにアクセスする必要がある。
この作業は、訓練済みのソースモデルのみが利用できる実践的な環境に取り組み、ソースデータなしでそのようなモデルを効果的に活用してUDA問題を解決する方法に取り組みます。
論文 参考訳(メタデータ) (2020-02-20T03:13:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。