論文の概要: The 'Big Three' of Scientific Information: A comparative bibliometric review of Web of Science, Scopus, and OpenAlex
- arxiv url: http://arxiv.org/abs/2601.21908v1
- Date: Thu, 29 Jan 2026 16:00:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-30 16:22:49.96792
- Title: The 'Big Three' of Scientific Information: A comparative bibliometric review of Web of Science, Scopus, and OpenAlex
- Title(参考訳): The Big Three of Scientific Information: A comparative bibliometric review of Web of Science, Scopus, and OpenAlex
- Authors: Daniel Torres-Salinas, Wenceslao Arroyo-Machado,
- Abstract要約: 本研究は,Web of Science Core Collection, Scopus, OpenAlexの3つの主要な学際データベースについて検討した。
本研究の目的は,研究評価における戦略的意思決定を支援するために,包括的,メタデータの品質,機能的特徴に関する最新の証拠を提供することである。
- 参考スコア(独自算出の注目度): 0.3222802562733787
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The present comparative study examines the three main multidisciplinary bibliographic databases, Web of Science Core Collection, Scopus, and OpenAlex, with the aim of providing up-to-date evidence on coverage, metadata quality, and functional features to help inform strategic decisions in research assessment. The report is structured into two complementary methodological sections. First, it presents a systematic review of recent scholarly literature that investigates record volume, open-access coverage, linguistic diversity, reference coverage, and metadata quality; this is followed by an original bibliometric analysis of the 2015-2024 period that explores longitudinal distribution, document types, thematic profiles, linguistic differences, and overlap between databases. The text concludes with a ten-point executive summary and five recommendations.
- Abstract(参考訳): 本稿では,3つの主要な学際的書誌データベース,Web of Science Core Collection,Scopus,OpenAlexについて検討し,研究評価における戦略的意思決定を支援するために,包括的,メタデータ品質,機能的特徴の最新の証拠を提供することを目的とする。
報告は2つの補完的な方法論のセクションに分けられる。
まず, 記録量, オープンアクセスカバレッジ, 言語多様性, 参照カバレッジ, メタデータ品質を調査する最近の学術文献の体系的レビューを行い, 続いて, 2015-2024年代における経年的分布, 文書タイプ, 主題的プロファイル, 言語的差異, データベース間の重複について, 文献的分析を行った。
テキストは10ポイントの幹部概要と5つの勧告で締めくくられている。
関連論文リスト
- Beyond Chunking: Discourse-Aware Hierarchical Retrieval for Long Document Question Answering [51.7493726399073]
本稿では,長文質問応答を改善するための対話型階層型フレームワークを提案する。
このフレームワークには3つの重要な革新がある: 長文の専門的な談話解析、LLMに基づく談話関係ノードの拡張、構造誘導階層検索である。
論文 参考訳(メタデータ) (2025-05-26T14:45:12Z) - Decoding MIE: A Novel Dataset Approach Using Topic Extraction and Affiliation Parsing [0.0]
本研究は,医療情報学ヨーロッパ(MIE)会議の手続きから得られた新しいデータセットを紹介する。
我々は,「健康技術・情報学研究」誌の4,606論文からメタデータと要約を抽出し,分析した。
論文 参考訳(メタデータ) (2024-10-06T19:34:23Z) - SurveySum: A Dataset for Summarizing Multiple Scientific Articles into a Survey Section [7.366861473623427]
本稿では,複数の学術論文を要約した新しいデータセットについて紹介する。
筆者らの貢献は,(1)ドメイン固有の要約ツールのギャップに対処する新しいデータセットであるサーベイサム,(2)科学論文を1つのセクションにまとめる2つの特定のパイプライン,(3)これらのパイプラインの評価を複数の指標を用いて比較することである。
論文 参考訳(メタデータ) (2024-08-29T11:13:23Z) - A Survey of Decomposition-Based Evolutionary Multi-Objective Optimization: Part II -- A Data Science Perspective [4.322038460697958]
5,400以上の論文,10,000人の著者,400の会場,1600のMOEA/D研究機関をカプセル化したナレッジグラフを構築します。
また、MOEA/Dの協調と引用ネットワークを探求し、文学の成長に隠れたパターンを明らかにする。
論文 参考訳(メタデータ) (2024-04-22T14:38:58Z) - A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [51.26815896167173]
本稿では,3つの相補的な側面からPAMIレビューを総合的に分析する。
我々の分析は、現在のレビューの実践において、独特の組織パターンと永続的なギャップを明らかにします。
最後に、最先端のAI生成レビューの評価は、コヒーレンスと組織の進歩を奨励していることを示している。
論文 参考訳(メタデータ) (2024-02-20T11:28:50Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
我々は、大規模言語モデル(LM)の助けを借りて、ピアレビューにおける公平性格差の徹底した厳密な研究を行う。
我々は、2017年から現在までのICLR(International Conference on Learning Representations)カンファレンスで、包括的なリレーショナルデータベースを収集、組み立て、維持しています。
我々は、著作者性別、地理、著作者、機関的名声など、興味のある複数の保護属性に対する公平性の違いを仮定し、研究する。
論文 参考訳(メタデータ) (2022-11-07T16:19:42Z) - An Empirical Survey on Long Document Summarization: Datasets, Models and
Metrics [33.655334920298856]
本稿では,長期文書要約研究の概要について概説する。
我々は、現在の研究の進展に対する視点を広げるために、実証分析を行う。
論文 参考訳(メタデータ) (2022-07-03T02:57:22Z) - What's New? Summarizing Contributions in Scientific Literature [85.95906677964815]
本稿では,論文のコントリビューションと作業状況について,個別の要約を生成するために,論文要約のアンタングル化という新たなタスクを導入する。
本稿では,学術論文のS2ORCコーパスを拡張し,コントリビューション・コントリビューション・コントリビューション・レファレンス・ラベルを付加する。
本稿では, 生成した出力の関連性, 新規性, 絡み合いを報告する総合的自動評価プロトコルを提案する。
論文 参考訳(メタデータ) (2020-11-06T02:23:01Z) - Hierarchical Bi-Directional Self-Attention Networks for Paper Review
Rating Recommendation [81.55533657694016]
本稿では,階層型双方向自己注意ネットワークフレームワーク(HabNet)を提案する。
具体的には、文エンコーダ(レベル1)、レビュー内エンコーダ(レベル2)、レビュー間エンコーダ(レベル3)の3つのレベルで、論文レビューの階層構造を利用する。
我々は、最終的な受理決定を行う上で有用な予測者を特定することができ、また、数値的なレビュー評価とレビュアーが伝えるテキストの感情の不整合を発見するのに役立てることができる。
論文 参考訳(メタデータ) (2020-11-02T08:07:50Z) - A Survey on Text Classification: From Shallow to Deep Learning [83.47804123133719]
過去10年は、ディープラーニングが前例のない成功を収めたために、この分野の研究が急増している。
本稿では,1961年から2021年までの最先端のアプローチを見直し,そのギャップを埋める。
特徴抽出と分類に使用されるテキストとモデルに基づいて,テキスト分類のための分類を作成する。
論文 参考訳(メタデータ) (2020-08-02T00:09:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。