論文の概要: Three-dimensional squeezing of optically levitated nanospheres
- arxiv url: http://arxiv.org/abs/2601.22283v1
- Date: Thu, 29 Jan 2026 19:57:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-02 18:28:15.037917
- Title: Three-dimensional squeezing of optically levitated nanospheres
- Title(参考訳): 光レビテーションナノスフィアの3次元スクイーズ
- Authors: Giacomo Marocco, David C. Moore, Daniel Carney,
- Abstract要約: 本稿では,標準量子限界を超えるインパルスを測定するプロトコルを提案する。
このプロトコルは3つの空間次元のノイズを低減し、ハーモニックポテンシャルの周波数の一連のジャンプを通じて機械系の状態をスクイーズする。
我々は、現在の技術で、$sim$10 dBのスクイージングが達成可能であり、弱いインパルスを量子的に検出できると予測する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a protocol to measure impulses beyond the standard quantum limit. The protocol reduces noise in all three spatial dimensions and consists of squeezing a mechanical system's state via a series of jumps in the frequency of the harmonic potential. We quantify how decoherence in a realistic system of an optically levitated, dielectric nanoparticle limits the ultimate sensitivity. We predict that $\sim$10 dB of squeezing is achievable with current technology, enabling quantum-enhanced detection of weak impulses.
- Abstract(参考訳): 本稿では,標準量子限界を超えるインパルスを測定するプロトコルを提案する。
このプロトコルは3つの空間次元のノイズを低減し、ハーモニックポテンシャルの周波数の一連のジャンプを通じて機械系の状態をスクイーズする。
我々は,光レビテーションされた誘電体ナノ粒子の現実的なシステムにおけるデコヒーレンスが,究極の感度をいかに制限するかを定量化する。
我々は、現在の技術で、$\sim$10 dBのスクイージングが達成可能であり、弱いインパルスを量子的に検出できると予測している。
関連論文リスト
- Highly squeezed nanophotonic quantum microcombs with broadband frequency tunability [32.121475563036455]
直接検出された5.6dB$pm$0.2dBのスクイーズを生成するナノフォトニックスクイーサーを提案する。
16量子モードの量子周波数コム(QFC)を明らかにするナノフォトニックサスペンサーにシードアシスト検出技術を導入する。
その結果,ブロードバンドおよびマルチモードプラットフォームにおけるナノフォトニック励起光の生成と検出の両面で大きな進展が見られた。
論文 参考訳(メタデータ) (2025-05-06T17:59:23Z) - Quantum-amplified global-phase spectroscopy on an optical clock transition [4.4049570485299885]
我々はホロノミック量子ゲートの概念を応用し、新しいRabi型グローバル位相分光法(GPS)を開発した。
我々は、レーザーノイズを減らさずに2.4(5)dBのメトロジカルゲインを達成するOLCにおいて、量子増幅時間逆分光を実証することができる。
本手法は, 測定分解能に制限されず, 絡み合う相互作用のグローバルな性質により容易にスケールでき, 典型的な実験的不完全性に対して高い弾力性を示す。
論文 参考訳(メタデータ) (2025-04-02T17:18:18Z) - Cavity-Quantum Electrodynamics with Moiré Flatband Photonic Crystals [35.119260614523256]
量子ドットは、42 psから1692 psまでの40の因子で調整できるが、これは強いパーセルの増強とパーセルの阻害効果に起因する。
我々の発見は、量子インターネットアプリケーションのための量子光源、量子光スイッチ、量子ノードのムーアのフラットバンド化への道を開いた。
論文 参考訳(メタデータ) (2024-11-25T18:52:11Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
ニオブ酸リチウム薄膜で作製したフォトニック集積回路について述べる。
我々は2階非線形性を用いてポンプ光と同じ周波数で圧縮状態を生成し、回路制御と電気光学によるセンシングを実現する。
このようなチップ上のフォトニクスシステムは、低消費電力で動作し、必要なすべての機能を1つのダイに統合することで、量子光学センサーの新たな機会が開けることを期待している。
論文 参考訳(メタデータ) (2022-12-19T18:46:33Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
ウルトラストロングのハイブリッド量子系、さらにディープストロングでは、カップリングレジームはエキゾチックな物理現象を示す。
我々は, ラムド素子超伝導共振器の磁場によって誘起されるアシラリーXmon人工原子のパリティ対称性の破れを実験的に観察した。
この結果は、深い結合状態にある新しい量子真空効果を実験的に探求する方法を開く。
論文 参考訳(メタデータ) (2022-09-13T06:14:08Z) - Ponderomotive squeezing of light by a levitated nanoparticle in free
space [0.0]
光との相互作用により機械的に適合した素子を運動させることができる。
この光を駆動する運動は、電磁場における思慮的な相関を生じさせる。
空洞はしばしばこれらの相関性を高めるために使われます それらが光の量子的スクイーズを生成する地点まで。
論文 参考訳(メタデータ) (2022-02-18T07:57:36Z) - Quantum control of a nanoparticle optically levitated in cryogenic free
space [0.0]
マクロスケールでの量子力学のテストでは、機械運動とそのデコヒーレンスを極端に制御する必要がある。
本研究では, 低温自由空間においてフェムトグラム誘電体粒子を光的に浮遊させる。
測定に基づくフィードバックによって中心運動を冷却し, 平均占有率は0.65運動量で, 状態純度は43%である。
論文 参考訳(メタデータ) (2021-03-05T18:12:50Z) - Large Quantum Delocalization of a Levitated Nanoparticle using Optimal
Control: Applications for Force Sensing and Entangling via Weak Forces [0.0]
本研究では, 浮遊ナノ粒子の高調波ポテンシャルを最適に制御し, 中心質量運動状態を量子零点運動よりも大きい長さスケールのオーダーに量子的に非局在化する手法を提案する。
この高速ループプロトコルは、力覚を増強し、2つの弱い相互作用を持つナノ粒子の絡み合う速度を劇的に向上させることができる。
論文 参考訳(メタデータ) (2020-12-22T18:59:11Z) - Proposal for a nanomechanical qubit [0.0]
機械的な量子ビットは、量子計算とセンシングのための重要な新しいプラットフォームを提供する可能性がある。
懸濁カーボンナノチューブの曲げモードの1つを、ナノチューブで定義された二重量子ドットの電荷状態に結合することにより、十分な不調和を誘導できることを示す。
興味深いことに、量子ドットによる劣化は、結合系において数桁の規模で減少することが期待されている。
論文 参考訳(メタデータ) (2020-08-24T15:54:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。