論文の概要: GRIP2: A Robust and Powerful Deep Knockoff Method for Feature Selection
- arxiv url: http://arxiv.org/abs/2602.00218v1
- Date: Fri, 30 Jan 2026 16:30:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-03 19:28:33.063345
- Title: GRIP2: A Robust and Powerful Deep Knockoff Method for Feature Selection
- Title(参考訳): GRIP2: 機能選択のためのロバストでパワフルなDeep Knockoffメソッド
- Authors: Bob Junyi Zou, Lu Tian,
- Abstract要約: グループ規則化重要度2次元(GRIP2)は、2次元正則化面上の第1層の特徴活性を統合する。
合成および半実データの実験において、GRIP2は特徴相関と雑音レベルの改善を実証した。
現実のHIV薬剤耐性データでは、GRIP2は既知の抵抗関連変異を、確立された線形塩基性よりも優れたパワーで回収する。
- 参考スコア(独自算出の注目度): 9.889589777434283
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying truly predictive covariates while strictly controlling false discoveries remains a fundamental challenge in nonlinear, highly correlated, and low signal-to-noise regimes, where deep learning based feature selection methods are most attractive. We propose Group Regularization Importance Persistence in 2 Dimensions (GRIP2), a deep knockoff feature importance statistic that integrates first-layer feature activity over a two-dimensional regularization surface controlling both sparsity strength and sparsification geometry. To approximate this surface integral in a single training run, we introduce efficient block-stochastic sampling, which aggregates feature activity magnitudes across diverse regularization regimes along the optimization trajectory. The resulting statistics are antisymmetric by construction, ensuring finite-sample FDR control. In extensive experiments on synthetic and semi-real data, GRIP2 demonstrates improved robustness to feature correlation and noise level: in high correlation and low signal-to-noise ratio regimes where standard deep learning based feature selectors may struggle, our method retains high power and stability. Finally, on real-world HIV drug resistance data, GRIP2 recovers known resistance-associated mutations with power better than established linear baselines, confirming its reliability in practice.
- Abstract(参考訳): 深層学習に基づく特徴選択法が最も魅力的である非線形・高相関・低信号対雑音の体系において、真に予測的共変体を同定し、厳密な偽発見を制御しながら、真に予測的共変体を同定することは根本的な課題である。
本稿では,2次元におけるグループ正規化重要度(GRIP2)について提案する。これは2次元正則化面上での1層特徴量活性を統合し,空間強度と空間分布の両面を制御した深部ノックオフ特徴量(GRIP2)の統計量である。
この曲面積分を1つのトレーニングランで近似するために,最適化軌道に沿って多種多様な正規化系にまたがる特徴量の集計を行う効率的なブロック確率サンプリングを導入する。
結果の統計は構成によって反対称であり、有限サンプルFDR制御を保証する。
GRIP2は,高相関と低信号-雑音比の条件下で,標準深層学習に基づく特徴選択器が困難である場合において,高いパワーと安定性を保ちながら,特徴相関と雑音レベルに対する頑健性の向上を実証する。
最後に、現実のHIV薬剤耐性データに基づいて、GRIP2は既知の抵抗関連変異を、確立された線形ベースラインよりも優れたパワーで回収し、実際にその信頼性を確認する。
関連論文リスト
- ETR: Outcome-Guided Elastic Trust Regions for Policy Optimization [6.716883192613149]
textbfElastic textbfTrust textbfETRを提案する。
ETRはGRPOを一貫して上回り、より優れた精度を実現し、政策エントロピー劣化を効果的に緩和する。
論文 参考訳(メタデータ) (2026-01-07T09:19:53Z) - Open-World Deepfake Attribution via Confidence-Aware Asymmetric Learning [78.92934995292113]
本稿では,既知の偽造と新規な偽造の信頼のバランスをとる,信頼を意識した非対称学習(CAL)フレームワークを提案する。
CALは従来手法を一貫して上回り、既知の偽造と新しい偽造の両方で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2025-12-14T12:31:28Z) - Improving Deepfake Detection with Reinforcement Learning-Based Adaptive Data Augmentation [60.04281435591454]
CRDA(Curriculum Reinforcement-Learning Data Augmentation)は、マルチドメインの偽造機能を段階的にマスターするための検出器を導く新しいフレームワークである。
私たちのアプローチの中心は、強化学習と因果推論を統合することです。
提案手法は検出器の一般化性を大幅に向上し,複数のクロスドメインデータセット間でSOTA法より優れている。
論文 参考訳(メタデータ) (2025-11-10T12:45:52Z) - On the Adversarial Robustness of Learning-based Conformal Novelty Detection [10.58528988397402]
AdaDetect を用いた共形ノベルティ検出の対角的ロバスト性について検討した。
以上の結果から,高い検出力を維持しながらFDRを著しく増大させる可能性が示唆された。
論文 参考訳(メタデータ) (2025-10-01T03:29:11Z) - RbFT: Robust Fine-tuning for Retrieval-Augmented Generation against Retrieval Defects [12.5122702720856]
本稿では,検索欠陥に対する大規模言語モデルのレジリエンスを高めるために,Robust Fine-Tuning (RbFT)を提案する。
実験の結果,RbFTは多様な検索条件におけるRAGシステムのロバスト性を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2025-01-30T14:15:09Z) - UncertaintyRAG: Span-Level Uncertainty Enhanced Long-Context Modeling for Retrieval-Augmented Generation [93.38604803625294]
IncertaintyRAG, a novel approach for long-context Retrieval-Augmented Generation (RAG)について紹介する。
我々は、SNR(Signal-to-Noise Ratio)ベースのスパン不確実性を用いて、テキストチャンク間の類似性を推定する。
不確かさRAGはLLaMA-2-7Bでベースラインを2.03%上回り、最先端の結果を得る。
論文 参考訳(メタデータ) (2024-10-03T17:39:38Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
フェデレートされた学習は、微調整された特徴をスキイングし、モデルの堅牢性を損なうリスクがある。
3つのロバスト性指標を導入し、多様なロバストデータセットで実験を行う。
提案手法は,パラメータ効率のよい微調整手法を含む多種多様なシナリオにまたがるロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2024-01-25T09:18:51Z) - Adversarial Robustness via Fisher-Rao Regularization [33.134075068748984]
適応的堅牢性は、機械学習への関心の高まりのトピックとなっている。
火はカテゴリーのクロスエントロピー損失に対する新しいフィッシャー・ラオ正規化である。
論文 参考訳(メタデータ) (2021-06-12T04:12:58Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - Derivative-Free Policy Optimization for Risk-Sensitive and Robust
Control Design: Implicit Regularization and Sample Complexity [15.940861063732608]
直接政策検索は、現代の強化学習(RL)の作業馬の1つとして役立ちます。
線形リスク感知型ロバストコントローラにおける政策ロバスト性(PG)手法の収束理論について検討する。
私たちのアルゴリズムの特徴の1つは、学習フェーズ中に特定のレベルの複雑さ/リスク感受性コントローラが保持されるということです。
論文 参考訳(メタデータ) (2021-01-04T16:00:46Z) - Distributional Robustness and Regularization in Reinforcement Learning [62.23012916708608]
経験値関数の新しい正規化器を導入し、ワッサーシュタイン分布のロバストな値関数を下限とすることを示す。
強化学習における$textitexternalな不確実性に対処するための実用的なツールとして正規化を使用することを提案する。
論文 参考訳(メタデータ) (2020-03-05T19:56:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。