論文の概要: Adaptive Dual-Weighting Framework for Federated Learning via Out-of-Distribution Detection
- arxiv url: http://arxiv.org/abs/2602.01039v1
- Date: Sun, 01 Feb 2026 05:54:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-03 19:28:33.552873
- Title: Adaptive Dual-Weighting Framework for Federated Learning via Out-of-Distribution Detection
- Title(参考訳): 分布外検出によるフェデレーション学習のための適応的デュアル重み付けフレームワーク
- Authors: Zhiwei Ling, Hailiang Zhao, Chao Zhang, Xiang Ao, Ziqi Wang, Cheng Zhang, Zhen Qin, Xinkui Zhao, Kingsum Chow, Yuanqing Wu, MengChu Zhou,
- Abstract要約: Federated Learning (FL)は、大規模分散サービスノード間の協調的なモデルトレーニングを可能にする。
実世界のサービス指向デプロイメントでは、異種ユーザ、デバイス、アプリケーションシナリオによって生成されたデータは本質的にIIDではない。
FLoodは、オフ・オブ・ディストリビューション(OOD)検出にインスパイアされた新しいFLフレームワークである。
- 参考スコア(独自算出の注目度): 53.45696787935487
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Federated Learning (FL) enables collaborative model training across large-scale distributed service nodes while preserving data privacy, making it a cornerstone of intelligent service systems in edge-cloud environments. However, in real-world service-oriented deployments, data generated by heterogeneous users, devices, and application scenarios are inherently non-IID. This severe data heterogeneity critically undermines the convergence stability, generalization ability, and ultimately the quality of service delivered by the global model. To address this challenge, we propose FLood, a novel FL framework inspired by out-of-distribution (OOD) detection. FLood dynamically counteracts the adverse effects of heterogeneity through a dual-weighting mechanism that jointly governs local training and global aggregation. At the client level, it adaptively reweights the supervised loss by upweighting pseudo-OOD samples, thereby encouraging more robust learning from distributionally misaligned or challenging data. At the server level, it refines model aggregation by weighting client contributions according to their OOD confidence scores, prioritizing updates from clients with higher in-distribution consistency and enhancing the global model's robustness and convergence stability. Extensive experiments across multiple benchmarks under diverse non-IID settings demonstrate that FLood consistently outperforms state-of-the-art FL methods in both accuracy and generalization. Furthermore, FLood functions as an orthogonal plug-in module: it seamlessly integrates with existing FL algorithms to boost their performance under heterogeneity without modifying their core optimization logic. These properties make FLood a practical and scalable solution for deploying reliable intelligent services in real-world federated environments.
- Abstract(参考訳): フェデレートラーニング(FL)は、データプライバシを保持しながら、大規模分散サービスノード間で協調的なモデルトレーニングを可能にし、エッジクラウド環境におけるインテリジェントなサービスシステムの基盤となる。
しかし、実際のサービス指向デプロイメントでは、異種ユーザ、デバイス、アプリケーションシナリオによって生成されたデータは本質的にIIDではない。
この厳しいデータの不均一性は、収束安定性、一般化能力、そして究極的には、グローバルモデルによって提供されるサービスの質を著しく損なう。
この課題に対処するため, オフ・オブ・ディストリビューション(OOD)検出に触発された新しいFLフレームワークであるFLoodを提案する。
FLoodは局所的なトレーニングとグローバルアグリゲーションを共同で管理する二重重み付け機構を通じて、不均一性の悪影響を動的に抑制する。
クライアントレベルでは、疑似OODサンプルの重み付けによって教師付き損失を適応的に軽減し、分散的に不整合や挑戦的なデータからより堅牢な学習を促進する。
サーバレベルでは、OOD信頼性スコアに従ってクライアントからのコントリビューションを重み付け、より分散一貫性の高いクライアントからの更新を優先順位付けし、グローバルモデルの堅牢性と収束安定性を高めることにより、モデル集約を洗練します。
多様な非IID設定下での複数のベンチマークに対する大規模な実験により、FLoodは精度と一般化の両方において、最先端のFL法よりも一貫して優れていることが示された。
さらに、FLoodは直交プラグインモジュールとして機能し、既存のFLアルゴリズムとシームレスに統合し、コア最適化ロジックを変更することなく、不均一な性能を向上させる。
これらの特性により、FLoodは現実のフェデレーション環境で信頼性の高いインテリジェントサービスをデプロイするための実用的でスケーラブルなソリューションとなる。
関連論文リスト
- CO-PFL: Contribution-Oriented Personalized Federated Learning for Heterogeneous Networks [51.43780477302533]
コントリビューション指向型PFL(CO-PFL)は,グローバルアグリゲーションに対する各クライアントのコントリビューションを動的に推定するアルゴリズムである。
CO-PFLは、パーソナライズ精度、堅牢性、スケーラビリティ、収束安定性において、最先端の手法を一貫して超越している。
論文 参考訳(メタデータ) (2025-10-23T05:10:06Z) - Federated Loss Exploration for Improved Convergence on Non-IID Data [20.979550470097823]
Federated Loss Exploration (FedLEx)は、これらの課題に対処するために特別に設計された革新的なアプローチである。
FedLExは、既存のFLメソッドの非IID設定における欠点に特化している。
最先端のFLアルゴリズムによる実験により,性能が大幅に向上した。
論文 参考訳(メタデータ) (2025-06-23T13:42:07Z) - Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning(FL)は、クライアントが独自のデータをプライベートに保ちながら、協調的にモデルをトレーニングする分散学習パラダイムである。
本稿では,新しいフェデレーション最適化手法のクラスであるフェデレーション中心適応最適化を提案する。
論文 参考訳(メタデータ) (2025-01-17T04:00:50Z) - Incentive-Compatible Federated Learning with Stackelberg Game Modeling [11.863770989724959]
適応ガンマベースのStackelbergゲームに基づく新しいフェデレートラーニングフレームワークであるFLammaを紹介する。
当社のアプローチでは、サーバがリーダとして機能し、動的に崩壊要因を調整し、クライアントはフォロワーとして、その効用を最大化するローカルエポックの数を最適に選択します。
時間が経つにつれて、サーバはクライアントの影響を徐々にバランスさせ、最初は高いコントリビューションのクライアントに報酬を与え、その影響を徐々にレベルアップさせ、システムをStackelberg Equilibriumに誘導する。
論文 参考訳(メタデータ) (2025-01-05T21:04:41Z) - Modality Alignment Meets Federated Broadcasting [9.752555511824593]
フェデレートラーニング(FL)は、ローカルデータを集中化せずに、分散エッジデバイス間でモデルをトレーニングすることで、データのプライバシを保護する強力なアプローチとして登場した。
本稿では,テキストエンコーダをサーバ上に配置し,画像エンコーダをローカルデバイス上で動作させる,モダリティアライメントを利用した新しいFLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-24T13:30:03Z) - Client Contribution Normalization for Enhanced Federated Learning [4.726250115737579]
スマートフォンやラップトップを含むモバイルデバイスは、分散化された異種データを生成する。
フェデレートラーニング(FL)は、データ共有のない分散デバイス間でグローバルモデルの協調トレーニングを可能にすることで、有望な代替手段を提供する。
本稿では、FLにおけるデータ依存的不均一性に着目し、局所的に訓練されたモデルから抽出された平均潜在表現を活用する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-11-10T04:03:09Z) - On ADMM in Heterogeneous Federated Learning: Personalization, Robustness, and Fairness [16.595935469099306]
本稿では,乗算器の交互方向法(ADMM)を利用して,パーソナライズおよびグローバルモデルの学習を行う最適化フレームワークFLAMEを提案する。
我々の理論的解析は、軽度の仮定の下で、FLAMEのグローバル収束と2種類の収束速度を確立する。
実験の結果,FLAMEは収束と精度において最先端の手法より優れており,各種攻撃下では高い精度を達成できることがわかった。
論文 参考訳(メタデータ) (2024-07-23T11:35:42Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [55.0981921695672]
FLASH (Federated Learning Across Simultaneous Heterogeneities) は軽量かつ柔軟なクライアント選択アルゴリズムである。
ヘテロジニティの幅広い情報源の下で、最先端のFLフレームワークよりも優れています。
最先端のベースラインよりも大幅に、一貫性のある改善を実現している。
論文 参考訳(メタデータ) (2024-02-13T20:04:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。