論文の概要: Synesthesia of Vehicles: Tactile Data Synthesis from Visual Inputs
- arxiv url: http://arxiv.org/abs/2602.01832v1
- Date: Mon, 02 Feb 2026 09:06:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-03 19:28:34.024251
- Title: Synesthesia of Vehicles: Tactile Data Synthesis from Visual Inputs
- Title(参考訳): 自動車の合成:視覚入力による触覚データ合成
- Authors: Rui Wang, Yaoguang Cao, Yuyi Chen, Jianyi Xu, Zhuoyang Li, Jiachen Shang, Shichun Yang,
- Abstract要約: 自動運転車の視覚入力から触覚の励起を予測する新しいフレームワークであるSynesthesia of Vehicles (SoV)を提案する。
実車認識システムは、様々な道路や照明条件にまたがるマルチモーダルデータセットを収集した。
- 参考スコア(独自算出の注目度): 7.761854532968858
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous vehicles (AVs) rely on multi-modal fusion for safety, but current visual and optical sensors fail to detect road-induced excitations which are critical for vehicles' dynamic control. Inspired by human synesthesia, we propose the Synesthesia of Vehicles (SoV), a novel framework to predict tactile excitations from visual inputs for autonomous vehicles. We develop a cross-modal spatiotemporal alignment method to address temporal and spatial disparities. Furthermore, a visual-tactile synesthetic (VTSyn) generative model using latent diffusion is proposed for unsupervised high-quality tactile data synthesis. A real-vehicle perception system collected a multi-modal dataset across diverse road and lighting conditions. Extensive experiments show that VTSyn outperforms existing models in temporal, frequency, and classification performance, enhancing AV safety through proactive tactile perception.
- Abstract(参考訳): 自律走行車(AV)は安全のためにマルチモーダル核融合に頼っているが、現在の視覚および光学センサーは、車両の動的制御にとって重要な道路誘起励起を検出することができない。
自動運転車の視覚入力から触覚の励起を予測する新しいフレームワークであるSynesthesia of Vehicles (SoV)を提案する。
本研究では,時間的・空間的格差に対処する時間的空間的アライメント手法を開発した。
さらに、教師なし高品質な触覚データ合成のために、潜伏拡散を用いた視覚触覚合成モデル(VTSyn)を提案する。
実車認識システムは、様々な道路や照明条件にまたがるマルチモーダルデータセットを収集した。
広汎な実験により、VTSynは、時間、周波数、分類性能において既存のモデルよりも優れており、プロアクティブな触覚知覚を通じてAV安全性を高めることが示されている。
関連論文リスト
- Visual Dominance and Emerging Multimodal Approaches in Distracted Driving Detection: A Review of Machine Learning Techniques [3.378738346115004]
引き離された運転は、世界中の道路交通事故と死者の大きな原因であり続けている。
機械学習(ML)とディープラーニング(DL)の最近の進歩は、主に注意散逸を検出する視覚データに焦点を当てている。
本稿では,ML/DL技術を用いた視覚的,センサベース,マルチモーダル,新興モダリティを横断する運転検出のための74つの研究を体系的に評価する。
論文 参考訳(メタデータ) (2025-05-04T02:51:00Z) - Towards Intelligent Transportation with Pedestrians and Vehicles In-the-Loop: A Surveillance Video-Assisted Federated Digital Twin Framework [62.47416496137193]
本稿では,歩行者や車いすによるITSを支援するための監視ビデオ支援型デジタルツイン(SV-FDT)フレームワークを提案する。
i)複数のソースからトラフィック監視ビデオを収集するエンドレイヤ、(ii)セマンティックセグメンテーションに基づく視覚理解、ツインエージェントベースのインタラクションモデリング、およびローカルデジタルツインシステム(LDTS)をローカルで作成するエッジレイヤ、(iii)異なるリージョンにわたるLDTSを統合してグローバルDTモデルをリアルタイムで構築するクラウドレイヤの3層で構成されている。
論文 参考訳(メタデータ) (2025-03-06T07:36:06Z) - A Survey of World Models for Autonomous Driving [55.520179689933904]
自律運転の最近の進歩は、堅牢な世界モデリングの進歩によって推進されている。
世界モデルは、マルチセンサーデータ、セマンティックキュー、時間ダイナミクスを統合する駆動環境の高忠実度表現を提供する。
今後の研究は、自己指導型表現学習、マルチモーダル融合、高度なシミュレーションにおける重要な課題に対処する必要がある。
論文 参考訳(メタデータ) (2025-01-20T04:00:02Z) - Hypergraph-based Motion Generation with Multi-modal Interaction Relational Reasoning [13.294396870431399]
現実世界の運転環境は、車両間の動的かつ多様な相互作用によって特徴づけられる。
本研究では,自律走行車(AV)の運動予測のための統合フレームワークを提案する。
このフレームワークはマルチスケールのハイパーグラフニューラルネットワークを統合し、車両間のグループワイドインタラクションをモデル化する。
論文 参考訳(メタデータ) (2024-09-18T03:30:38Z) - UAV-Sim: NeRF-based Synthetic Data Generation for UAV-based Perception [62.71374902455154]
ニューラルレンダリングの最近の進歩を利用して、静的および動的ノベルビューUAVベースの画像レンダリングを改善する。
本研究では,主に実データと合成データのハイブリッドセットに基づいて最先端検出モデルが最適化された場合,性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-10-25T00:20:37Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
車両混合現実(MR)メタバースでは、物理的実体と仮想実体の間の距離を克服することができる。
現実的なデータ収集と物理世界からの融合による大規模交通・運転シミュレーションは困難かつコストがかかる。
生成AIを利用して、無制限の条件付きトラフィックを合成し、シミュレーションでデータを駆動する自律運転アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-16T16:54:10Z) - TL-GAN: Improving Traffic Light Recognition via Data Synthesis for
Autonomous Driving [8.474436072102844]
本稿では,交通信号の自律運転における音声認識を改善するために,レアクラスのデータを合成するための新しい交通信号生成手法TL-GANを提案する。
画像合成段階では、条件付き生成により、生成したトラフィック光画像の色を完全に制御できる。
シーケンス組み立て段階では、現実的で多様なトラフィック光シーケンスを合成するためのスタイル混合および適応テンプレートを設計する。
論文 参考訳(メタデータ) (2022-03-28T18:12:35Z) - Predicting Take-over Time for Autonomous Driving with Real-World Data:
Robust Data Augmentation, Models, and Evaluation [11.007092387379076]
我々は、運転者向けカメラビューで動作するコンピュータビジョンアルゴリズムによって作成される中高レベルの機能で動作するテイクオーバー時間(TOT)モデルを開発し、訓練する。
拡張データでサポートされたTOTモデルを用いて,遅延なく連続的なテイクオーバー時間を推定できることを示す。
論文 参考訳(メタデータ) (2021-07-27T16:39:50Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
画像表現とLiDAR表現を注目で統合する,新しいマルチモードフュージョントランスフォーマであるTransFuserを提案する。
本手法は, 衝突を76%低減しつつ, 最先端駆動性能を実現する。
論文 参考訳(メタデータ) (2021-04-19T11:48:13Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
本稿では,センサデータから直接複雑な都市交通のシーン一貫性のある動き予測を学習することを目的とする。
我々は、シーンを相互作用グラフとしてモデル化し、強力なグラフニューラルネットワークを用いてシーンの分散潜在表現を学習する。
論文 参考訳(メタデータ) (2020-07-23T14:31:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。