論文の概要: More Than a Quick Glance: Overcoming the Greedy Bias in KV-Cache Compression
- arxiv url: http://arxiv.org/abs/2602.02199v1
- Date: Mon, 02 Feb 2026 15:05:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-03 19:28:34.241536
- Title: More Than a Quick Glance: Overcoming the Greedy Bias in KV-Cache Compression
- Title(参考訳): クイック・グランス以上のもの:KVキャッシュ圧縮の悲惨なバイアスを克服する
- Authors: Aryan Sood, Tanvi Sharma, Vansh Agrawal,
- Abstract要約: LASER-KVは、厳格な累積予算政策の下でKV圧縮の限界をテストするために設計されたフレームワークである。
Babilongベンチマークの実験では、様々な長期タスクにおいて、従来の圧縮手法のパフォーマンスが15~30%向上した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While Large Language Models (LLMs) can theoretically support extensive context windows, their actual deployment is constrained by the linear growth of Key-Value (KV) cache memory. Prevailing compression strategies mitigate this through various pruning mechanisms, yet trade-off semantic recall for memory efficiency. In this work, we present LASER-KV (Layer Accumulated Selection with Exact-LSH Recall), a framework designed to test the limits of KV compression under a strict accumulative budgeting policy. We deviate from the standard fixed summary size approach by implementing a block-wise accumulation strategy governed by a protection divisor (n). This allows us to isolate the effects of compression from sliding window artifacts. Our experiments on the Babilong benchmark reveal performance degradation in previous compression methods by 15-30% on various long context tasks. LASER-KV maintains stable performance, achieving superior accuracies by a margin of upto 10% at 128k. These findings challenge the prevailing assumption that attention scores alone are a sufficient proxy for token utility.
- Abstract(参考訳): 大きな言語モデル(LLM)は理論的には広いコンテキストウィンドウをサポートするが、実際のデプロイメントはキーバリュー(KV)キャッシュメモリの線形成長によって制限される。
一般的な圧縮戦略は、様々なプルーニング機構を通じてこれを緩和するが、メモリ効率のトレードオフセマンティックリコールである。
本稿では,厳格な累積予算政策の下でKV圧縮の限界をテストするためのフレームワークであるLASER-KV(Layer Accumulated Selection with Exact-LSH Recall)を提案する。
我々は,保護因子(n)が支配するブロック単位の累積戦略を実装することで,標準的な固定要約サイズアプローチから逸脱する。
これにより、スライディングウィンドウアーティファクトから圧縮の効果を分離できます。
Babilongベンチマーク実験により, 従来の圧縮手法の性能劣化が15~30%向上した。
LASER-KVは安定した性能を維持し、128kで10%のマージンで優れた精度を達成する。
これらの知見は、注目スコアのみがトークンユーティリティーの十分なプロキシである、という一般的な仮定に挑戦する。
関連論文リスト
- SWAN: Sparse Winnowed Attention for Reduced Inference Memory via Decompression-Free KV-Cache Compression [7.603859408568262]
大きな言語モデル(LLM)は、キーバリュー(KV)キャッシュの巨大なメモリフットプリントのため、自動回帰推論において重大なボトルネックに直面します。
SWANは、このオーバーヘッドをなくす、新しい、微調整不要なフレームワークである。
提案手法はオフライン行列を用いてKV-cacheを回転させプルークする。
論文 参考訳(メタデータ) (2025-11-24T09:41:24Z) - ReCalKV: Low-Rank KV Cache Compression via Head Reordering and Offline Calibration [69.57122277845293]
ReCalKVは,キーと値の調整を施した低ランクKVキャッシュ圧縮手法である。
キーズでは、構造的に類似した頭部をグループにクラスタリングし、より正確な低ランク近似を可能にするSimisity aware Recontext (HSR)を提案する。
本稿では,オフラインヘッドワイド値(OVC)を提案する。これはトレーニングなしでキャリブレーションデータを用いて,効率的に値予測行列を校正する。
論文 参考訳(メタデータ) (2025-05-30T08:49:27Z) - DBudgetKV: Dynamic Budget in KV Cache Compression for Ensuring Optimal Performance [125.81664663201282]
我々はDBudgetKVと呼ばれる新しいKVキャッシュ圧縮手法を提案する。
残りのKVキャッシュがフルキャッシュのパフォーマンスにマッチしない場合、注意ベースのメトリクスが特徴である。
提案手法は, 平均圧縮率25%を超え, 無損失KVプルーニングを効果的かつ堅牢に実現している。
論文 参考訳(メタデータ) (2025-02-24T06:33:39Z) - Can LLMs Maintain Fundamental Abilities under KV Cache Compression? [29.510433427184385]
各種基本言語モデルにおけるKVキャッシュ圧縮の効果を評価するためのベンチマークKVFundaBenchを提案する。
ショットレベルのセマンティックコヒーレンスを維持しつつ、プリフィルとデコードフェーズを処理する新しい圧縮手法ShotKVを提案する。
論文 参考訳(メタデータ) (2025-02-04T02:23:06Z) - ChunkKV: Semantic-Preserving KV Cache Compression for Efficient Long-Context LLM Inference [61.412894960600205]
大きな言語モデル(LLM)は、長いテキストを処理する際に大きなGPUメモリを必要とする。
ChunkKVは、セマンティックチャンクを基本的な圧縮単位として扱うことで、KVキャッシュ圧縮を再定義する。
結果: ChunkKVは最先端の手法を最大8.7%精度で上回る。
論文 参考訳(メタデータ) (2025-02-01T03:49:47Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
キーバリュー(KV)キャッシュは、トランスフォーマーベースの自己回帰型大言語モデル(LLM)を提供する上で重要なコンポーネントである。
この問題を緩和するためのアプローチとしては、(1) アップサイクルステージに統合された効率的な注意変動、(2) テスト時のKVキャッシュ圧縮、(3) テスト時のKVキャッシュ圧縮がある。
そこで我々は,KV重み行列の低ランク近似を提案し,モデル再学習なしに既存のトランスフォーマーベースLCMとのプラグイン統合を実現する。
本手法は,テスト段階におけるアップサイクリング段階のモデルチューニングやタスク固有のプロファイリングを伴わずに機能するように設計されている。
論文 参考訳(メタデータ) (2024-10-04T03:10:53Z) - KV-Compress: Paged KV-Cache Compression with Variable Compression Rates per Attention Head [0.8158530638728501]
そこで我々は,PagedAttentionフレームワーク内で連続KVブロックを除去する新しい圧縮手法であるKV-Compressを紹介する。
本手法は,Mistral-7B-Instruct-v0.2およびLlama-3.1-8B-InstructのLongBenchにおける圧縮KVの総数を4倍に減らしながら,最先端の性能を実現する。
Llama-3.1-8B-InstructとLlama-3.1-70B-Instruct-FP8の評価は、圧縮速度を最大8倍まで達成し、性能に悪影響を及ぼすことなく、フルキャッシュ性能の90%以上を維持しながら、最大64倍まで向上する。
論文 参考訳(メタデータ) (2024-09-30T19:09:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。