論文の概要: Sparsely Supervised Diffusion
- arxiv url: http://arxiv.org/abs/2602.02699v1
- Date: Mon, 02 Feb 2026 19:11:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-04 18:37:15.02465
- Title: Sparsely Supervised Diffusion
- Title(参考訳): わずかに監督された拡散
- Authors: Wenshuai Zhao, Zhiyuan Li, Yi Zhao, Mohammad Hassan Vali, Martin Trapp, Joni Pajarinen, Juho Kannala, Arno Solin,
- Abstract要約: 拡散モデルはしばしば空間的に一貫性のない生成に悩まされる。
数行のコードで実装可能な,シンプルで効果的なマスキング戦略を提案する。
提案手法は,実験間で競合するFIDスコアを提供し,さらに重要なことは,小さなデータセット上でのトレーニング不安定性を回避することである。
- 参考スコア(独自算出の注目度): 47.64816806563238
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have shown remarkable success across a wide range of generative tasks. However, they often suffer from spatially inconsistent generation, arguably due to the inherent locality of their denoising mechanisms. This can yield samples that are locally plausible but globally inconsistent. To mitigate this issue, we propose sparsely supervised learning for diffusion models, a simple yet effective masking strategy that can be implemented with only a few lines of code. Interestingly, the experiments show that it is safe to mask up to 98\% of pixels during diffusion model training. Our method delivers competitive FID scores across experiments and, most importantly, avoids training instability on small datasets. Moreover, the masking strategy reduces memorization and promotes the use of essential contextual information during generation.
- Abstract(参考訳): 拡散モデルは、広範囲な生成タスクで顕著な成功を収めている。
しかし、それらはしばしば空間的に一貫性のない生成に悩まされる。
これにより、局所的に可塑性であるが、全世界的に矛盾するサンプルが得られる。
この問題を軽減するために,数行のコードだけで実装可能な,シンプルかつ効果的なマスキング戦略である拡散モデルのための疎密な教師付き学習を提案する。
興味深いことに、拡散モデルトレーニング中に98%のピクセルをマスクすることは安全である。
提案手法は,実験間で競合するFIDスコアを提供し,さらに重要なことは,小さなデータセット上でのトレーニング不安定性を回避することである。
さらに、マスキング戦略は記憶を減らし、生成時に必須の文脈情報の利用を促進する。
関連論文リスト
- Generalized Interpolating Discrete Diffusion [65.74168524007484]
仮面拡散はその単純さと有効性のために一般的な選択である。
ノイズ発生過程の設計において、より柔軟性の高い離散拡散(GIDD)を補間する新しいファミリを一般化する。
GIDDの柔軟性をエクスプロイトし、マスクと均一ノイズを組み合わせたハイブリッドアプローチを探索し、サンプル品質を向上する。
論文 参考訳(メタデータ) (2025-03-06T14:30:55Z) - Redistribute Ensemble Training for Mitigating Memorization in Diffusion Models [31.92526915009259]
拡散モデルは非常に高品質なサンプルを生成する能力で知られている。
最近のメモリ緩和法は、主にテキストモダリティの文脈における問題に対処している。
本稿では,視覚的モダリティの観点からの拡散モデルの新たな手法を提案する。
論文 参考訳(メタデータ) (2025-02-13T15:56:44Z) - Detecting, Explaining, and Mitigating Memorization in Diffusion Models [49.438362005962375]
そこで本研究では,テキスト条件予測の大きさを検査することで,暗黙のプロンプトを検出する方法を提案する。
提案手法はサンプリングアルゴリズムを中断することなくシームレスに統合し,第1世代でも高い精度を実現する。
検出戦略に基づいて,個々の単語やトークンの記憶への寄与を示す説明可能なアプローチを提示する。
論文 参考訳(メタデータ) (2024-07-31T16:13:29Z) - Iterative Ensemble Training with Anti-Gradient Control for Mitigating Memorization in Diffusion Models [20.550324116099357]
拡散モデルは、新規で高品質なサンプルを生成できることで知られている。
最近のメモリ緩和手法は、クロスモーダル生成タスクにおけるテキストモダリティ問題にのみ焦点をあてるか、あるいはデータ拡張戦略を利用するかのどちらかである。
本稿では,視覚的モダリティの観点からの拡散モデルのための新しいトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-22T02:19:30Z) - Segue: Side-information Guided Generative Unlearnable Examples for
Facial Privacy Protection in Real World [64.4289385463226]
生成不可能な例としては、Segue: Side-information guided Generative unlearnable Exampleを提案する。
転送性を向上させるために,真のラベルや擬似ラベルなどの側面情報を導入する。
JPEG圧縮、敵対的トレーニング、およびいくつかの標準的なデータ拡張に抵抗することができる。
論文 参考訳(メタデータ) (2023-10-24T06:22:37Z) - CamoDiffusion: Camouflaged Object Detection via Conditional Diffusion
Models [72.93652777646233]
カモフラーゲ型物体検出(COD)は、カモフラーゲ型物体とその周囲の類似性が高いため、コンピュータビジョンにおいて難しい課題である。
本研究では,CODを拡散モデルを利用した条件付きマスク生成タスクとして扱う新しいパラダイムを提案する。
カモ拡散(CamoDiffusion)と呼ばれる本手法では,拡散モデルのデノナイズプロセスを用いてマスクの雑音を反復的に低減する。
論文 参考訳(メタデータ) (2023-05-29T07:49:44Z) - DiffusionSeg: Adapting Diffusion Towards Unsupervised Object Discovery [20.787180028571694]
DiffusionSegは、2段階戦略を含む合成探索フレームワークである。
我々は,豊富な画像を合成し,第1段階でマスクを得るための新しいトレーニングフリーアテンションカットを提案する。
第2のエクスプロイト段階では、構造的ギャップを埋めるために、インバージョン技術を用いて、与えられた画像を拡散特徴にマッピングする。
論文 参考訳(メタデータ) (2023-03-17T07:47:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。