論文の概要: LaVPR: Benchmarking Language and Vision for Place Recognition
- arxiv url: http://arxiv.org/abs/2602.03253v1
- Date: Tue, 03 Feb 2026 08:38:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-04 18:37:15.33104
- Title: LaVPR: Benchmarking Language and Vision for Place Recognition
- Title(参考訳): LaVPR: 場所認識のためのベンチマーク言語とビジョン
- Authors: Ofer Idan, Dan Badur, Yosi Keller, Yoli Shavit,
- Abstract要約: 既存のVPRデータセットを65万以上のリッチな自然言語記述で拡張する大規模なベンチマークであるLaVPRを紹介します。
その結果,視覚的に劣化した条件下で言語記述が一貫した利得が得られることがわかった。
LaVPRは、実世界のレジリエンスとリソース制約されたデプロイメントの実践の両方が可能な、新しいタイプのローカライゼーションシステムを実現する。
- 参考スコア(独自算出の注目度): 16.711881128691605
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Visual Place Recognition (VPR) often fails under extreme environmental changes and perceptual aliasing. Furthermore, standard systems cannot perform "blind" localization from verbal descriptions alone, a capability needed for applications such as emergency response. To address these challenges, we introduce LaVPR, a large-scale benchmark that extends existing VPR datasets with over 650,000 rich natural-language descriptions. Using LaVPR, we investigate two paradigms: Multi-Modal Fusion for enhanced robustness and Cross-Modal Retrieval for language-based localization. Our results show that language descriptions yield consistent gains in visually degraded conditions, with the most significant impact on smaller backbones. Notably, adding language allows compact models to rival the performance of much larger vision-only architectures. For cross-modal retrieval, we establish a baseline using Low-Rank Adaptation (LoRA) and Multi-Similarity loss, which substantially outperforms standard contrastive methods across vision-language models. Ultimately, LaVPR enables a new class of localization systems that are both resilient to real-world stochasticity and practical for resource-constrained deployment. Our dataset and code are available at https://github.com/oferidan1/LaVPR.
- Abstract(参考訳): 視覚的位置認識(VPR)はしばしば、極端な環境変化と知覚的エイリアスの下で失敗する。
さらに、標準システムは、緊急応答などのアプリケーションに必要な機能である、言語記述だけでは、"盲点"ローカライゼーションを実行できない。
これらの課題に対処するため、既存のVPRデータセットを65万以上のリッチな自然言語記述で拡張する大規模なベンチマークであるLaVPRを紹介します。
LaVPRを用いて,頑健性向上のためのマルチモーダルフュージョンと,言語に基づくローカライゼーションのためのクロスモーダル検索という2つのパラダイムについて検討する。
以上の結果から,言語記述が視覚的に劣化した状況において一貫した利得をもたらすことが示唆された。
特に、言語を追加することで、より大きな視覚のみのアーキテクチャのパフォーマンスに匹敵するコンパクトモデルが可能になる。
低ランク適応(LoRA)と多相性損失(Multi-Similarity loss)を用いて,クロスモーダル検索のためのベースラインを確立する。
最終的に、LaVPRは、現実の確率性に回復力があり、リソース制約されたデプロイメントに実用的である新しいタイプのローカライゼーションシステムを可能にします。
データセットとコードはhttps://github.com/oferidan1/LaVPR.orgから入手可能です。
関連論文リスト
- BREATH-VL: Vision-Language-Guided 6-DoF Bronchoscopy Localization via Semantic-Geometric Fusion [7.382475458362566]
BREATH-VLは,視覚言語モデルからのセマンティックキューと,登録手法からの幾何情報を統合し,正確な6-DoFポーズ推定を行うハイブリッドフレームワークである。
これに基づいて、BREATH-VLは、最先端の視覚のみのローカライゼーション法を精度と一般化の両方で上回り、翻訳誤差を最良性能のベースラインと比較して25.5%削減する。
論文 参考訳(メタデータ) (2026-01-07T09:00:52Z) - Scale, Don't Fine-tune: Guiding Multimodal LLMs for Efficient Visual Place Recognition at Test-Time [12.659582318581606]
Vision Foundation Models (VFM) や Multimodal Large Language Models (MLLM) といった現在のアプローチでは意味理解が強化されているが、微調整時に高い計算オーバーヘッドと限られたクロスドメイン転送性に悩まされている。
本稿では,直接類似度スコアリングのためのガイダンスベースの手法を用いて,視覚言語アライメント機能を活用したテスト時間スケーリング(TTS)を用いた新しいフレームワークを提案する。
提案手法では,長さ制御可能なスコアアウトプットを生成する構造的プロンプトを用いることで,2段階処理を除去する。
論文 参考訳(メタデータ) (2025-09-02T09:25:13Z) - Vocabulary-free Fine-grained Visual Recognition via Enriched Contextually Grounded Vision-Language Model [52.01031460230826]
伝統的なアプローチは固定語彙と閉集合分類パラダイムに大きく依存している。
近年の研究では、大規模言語モデルと視覚言語モデル(VLM)を組み合わせることで、オープンセット認識が可能であることが実証されている。
そこで本研究では,精密な視覚認識のための最先端の手法であるEnriched-FineRを提案する。
論文 参考訳(メタデータ) (2025-07-30T20:06:01Z) - Integrating Frequency-Domain Representations with Low-Rank Adaptation in Vision-Language Models [0.6715525121432597]
本研究では,特徴抽出,拡張性,効率性を向上する新しい視覚言語モデル(VLM)フレームワークを提案する。
ガウス雑音のレベルが異なるベンチマークデータセットを用いて,キャプション生成モデルと視覚質問応答(VQA)タスクの評価を行った。
我々のモデルは、特に無人地上車両(UGV)に搭載されたRealSenseカメラで捉えた現実世界のイメージに対して、より詳細で文脈的に関係のある応答を提供する。
論文 参考訳(メタデータ) (2025-03-08T01:22:10Z) - Context-Based Visual-Language Place Recognition [4.737519767218666]
視覚に基づく位置認識に対する一般的なアプローチは、低レベルの視覚的特徴に依存している。
シーン変更に対して堅牢で,追加のトレーニングを必要としない,新しいVPRアプローチを導入する。
ゼロショット・言語駆動セマンティックセグメンテーションモデルを用いて画素レベルの埋め込みを抽出し,セマンティックイメージ記述子を構築する。
論文 参考訳(メタデータ) (2024-10-25T06:59:11Z) - Locality Alignment Improves Vision-Language Models [55.275235524659905]
近年では視覚言語モデル (VLM) が普及しているが、その多くが基本的な空間推論の誤りに悩まされている。
私たちのゴールは、ローカルとグローバルの両方の画像セマンティクスを効果的にキャプチャするビジョンバックボーンでこれを解決することです。
局所性アライメントとMaskEmbedと呼ばれる新しい微調整手順を提案する。
論文 参考訳(メタデータ) (2024-10-14T21:01:01Z) - SMILE: Speech Meta In-Context Learning for Low-Resource Language Automatic Speech Recognition [55.2480439325792]
音声メタインコンテキスト学習(SMILE)は、メタラーニングと音声インコンテキスト学習(SICL)を組み合わせた革新的なフレームワークである
SMILEは、トレーニング不要な多言語ASRタスクにおいて、ベースライン手法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2024-09-16T16:04:16Z) - Pushing the Limits of Vision-Language Models in Remote Sensing without Human Annotations [5.065947993017157]
本研究では、画像復号化機械学習モデルを用いて、視覚言語データセットをキュレートする手法を提案する。
約960万の視覚言語対のデータセットをVHR画像で収集しました。
結果として得られたモデルは、公開可能なビジョン言語データセットを活用できないものよりも優れていた。
論文 参考訳(メタデータ) (2024-09-11T06:36:08Z) - CODIS: Benchmarking Context-Dependent Visual Comprehension for Multimodal Large Language Models [58.95889895912716]
我々は、自由形式のテキストで提供されるコンテキストを用いて視覚的理解を高めるモデルの有効性を評価するために、CODISと名付けられた新しいベンチマークを導入する。
以上の結果から,MLLMは必ずしも人体性能に劣っていることが示唆された。
このことは、MLLMが視覚を文脈依存的に理解する能力を高めることの必要性を浮き彫りにする。
論文 参考訳(メタデータ) (2024-02-21T08:21:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。