論文の概要: HySparse: A Hybrid Sparse Attention Architecture with Oracle Token Selection and KV Cache Sharing
- arxiv url: http://arxiv.org/abs/2602.03560v1
- Date: Tue, 03 Feb 2026 14:05:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-04 18:37:15.498509
- Title: HySparse: A Hybrid Sparse Attention Architecture with Oracle Token Selection and KV Cache Sharing
- Title(参考訳): HySparse: Oracleのトークン選択とKVキャッシュ共有を備えたハイブリッドスパースアテンションアーキテクチャ
- Authors: Yizhao Gao, Jianyu Wei, Qihao Zhang, Yu Cheng, Shimao Chen, Zhengju Tang, Zihan Jiang, Yifan Song, Hailin Zhang, Liang Zhao, Bo Yang, Gang Wang, Shijie Cao, Fuli Luo,
- Abstract要約: HySparseは新しいアーキテクチャで、各注意層をスパースアテンション層でインターリーブする。
7B高密度モデルと80BMoEモデルの両方でHySparseを評価した。
- 参考スコア(独自算出の注目度): 25.110428141134246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work introduces Hybrid Sparse Attention (HySparse), a new architecture that interleaves each full attention layer with several sparse attention layers. While conceptually simple, HySparse strategically derives each sparse layer's token selection and KV caches directly from the preceding full attention layer. This architecture resolves two fundamental limitations of prior sparse attention methods. First, conventional approaches typically rely on additional proxies to predict token importance, introducing extra complexity and potentially suboptimal performance. In contrast, HySparse uses the full attention layer as a precise oracle to identify important tokens. Second, existing sparse attention designs often reduce computation without saving KV cache. HySparse enables sparse attention layers to reuse the full attention KV cache, thereby reducing both computation and memory. We evaluate HySparse on both 7B dense and 80B MoE models. Across all settings, HySparse consistently outperforms both full attention and hybrid SWA baselines. Notably, in the 80B MoE model with 49 total layers, only 5 layers employ full attention, yet HySparse achieves substantial performance gains while reducing KV cache storage by nearly 10x.
- Abstract(参考訳): この作業では、ハイブリット・スパース・アテンション(Hybrid Sparse Attention, HySparse)が導入された。
概念的には単純だが、HySparseは各スパース層のトークン選択とKVキャッシュを直接前のフルアテンション層から引き出す。
このアーキテクチャは、事前のスパースアテンション手法の2つの基本的な制限を解消する。
第一に、従来のアプローチはトークンの重要性を予測するために追加のプロキシに頼り、余分な複雑さと潜在的に最適以下のパフォーマンスを導入する。
対照的にHySparseでは、重要なトークンを特定するために、完全な注意層を正確なオラクルとして使用しています。
第二に、既存のスパースアテンションデザインは、KVキャッシュを節約せずに計算を減らすことが多い。
HySparseは、スパースアテンション層がフルアテンションKVキャッシュを再利用し、計算とメモリの両方を削減できる。
7B高密度モデルと80BMoEモデルの両方でHySparseを評価した。
すべての設定において、HySparseは、完全な注目とハイブリッドSWAベースラインの両方を一貫して上回っている。
特に、全層49の80B MoEモデルでは、完全に注意を払っているのは5層に過ぎないが、HySparseはKVキャッシュストレージを10倍近く削減しながら、大幅なパフォーマンス向上を実現している。
関連論文リスト
- HyLRA: Hybrid Layer Reuse Attention for Efficient Long-Context Inference [11.718567830546538]
大規模言語モデルにおける長文推論は、注意の2次計算の複雑さによってボトルネックとなる。
bf HyLRAは階層ワイド・スパシティ・プロファイリングによって駆動される新しいフレームワークである。
その結果,HyLRAは推論のスループットを6%から46%向上し,同等の性能を維持していることがわかった。
論文 参考訳(メタデータ) (2026-01-31T15:36:17Z) - OjaKV: Context-Aware Online Low-Rank KV Cache Compression with Oja's Rule [54.37983890753086]
我々は,戦略的ハイブリッドストレージポリシとオンラインサブスペース適応を統合したフレームワークであるOjaKVを紹介する。
OjaKVは、重要かつ最新のトークンをフルランクで保存し、注意のために高忠実なアンカーを維持している。
オンライン主成分分析のためのOjaのアルゴリズムを用いて、プロジェクションベースを漸進的に適応させることにより、低ランク圧縮を適用する。
論文 参考訳(メタデータ) (2025-09-25T21:42:27Z) - KVCompose: Efficient Structured KV Cache Compression with Composite Tokens [7.922206020386125]
大規模言語モデル(LLM)は、効率的な自己回帰復号化のためにキー値(KV)キャッシュに依存している。
我々は,注意誘導型,層適応型複合トークンに基づく,シンプルで効果的なKVキャッシュ圧縮フレームワークを提案する。
本手法は精度を保ちながらメモリの大幅な削減を実現し,従来手法と半構造化手法を一貫して上回っている。
論文 参考訳(メタデータ) (2025-09-05T14:58:24Z) - AttentionPredictor: Temporal Patterns Matter for KV Cache Compression [64.75459635661562]
我々は,KVキャッシュ圧縮とクリティカルトークン識別のための注意パターンを直接予測する,学習に基づく最初の手法であるAttentionPredictorを提案する。
AttentionPredictorは、注意スコアを正確に予測し、無視可能なメモリを消費する統一予測モデルを共有する。
注意情報の大半を保持することで、AttentionPredictorは、キャッシュオフロードシナリオで13$times$KVキャッシュ圧縮と5.6$times$スピードアップを達成する。
論文 参考訳(メタデータ) (2025-02-06T13:41:46Z) - EMS: Adaptive Evict-then-Merge Strategy for Head-wise KV Cache Compression Based on Global-Local Importance [44.14919492126948]
メモリオーバーヘッドが重要になるにつれて、KVキャッシュの効率的な圧縮が注目されている。
我々は,これらの制限を克服すると同時に,極端な圧縮比下でのKVキャッシュ圧縮を向上するEMSを提案する。
EMSは最低の難易度を一貫して達成し、256のキャッシュ予算の下でLongBench上の4つのLLMで1.28ポイント以上改善し、Needdle-in-a-Haystackタスクのコンテキスト長の2%未満のキャッシュ予算で95%の検索精度を維持している。
論文 参考訳(メタデータ) (2024-12-11T16:35:13Z) - KVSharer: Efficient Inference via Layer-Wise Dissimilar KV Cache Sharing [58.29726147780976]
我々は,層間をKVキャッシュで共有し,層間圧縮を実現する,textit KVSharerと呼ばれるプラグアンドプレイ方式を提案する。
実験の結果、textit KVSharerはKVキャッシュの計算を30%削減し、メモリ消費を削減できることがわかった。
我々は,textit KVSharerが既存の層内KVキャッシュ圧縮手法と互換性があることを検証する。
論文 参考訳(メタデータ) (2024-10-24T08:06:41Z) - MiniCache: KV Cache Compression in Depth Dimension for Large Language Models [48.03117580340151]
キーバリュー(KV)キャッシュは、以前に生成されたトークンのキー値状態を格納する。
KVキャッシュのサイズはシーケンス長とともに線形に増加し、長いコンテキスト入力と広範囲なシーケンス生成を必要とするアプリケーションの課題を提起する。
レイヤ間のKVキャッシュを,新しい奥行きの観点から圧縮する,MiniCacheという,シンプルで効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-05-23T09:43:52Z) - Get More with LESS: Synthesizing Recurrence with KV Cache Compression for Efficient LLM Inference [78.65321721142624]
我々はキー値(KV)キャッシュによって課されるメモリボトルネックに焦点を当てる。
既存のKVキャッシュ手法は、比較的重要でないKVペアの大きなスワストを刈り取ったり、取り除いたりすることでこの問題に対処する。
本稿では,固定サイズキャッシュと退避型キャッシュを簡易に統合したLESSを提案する。
論文 参考訳(メタデータ) (2024-02-14T18:54:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。