論文の概要: Training A Foundation Model to Represent Graphs as Vectors
- arxiv url: http://arxiv.org/abs/2602.04244v1
- Date: Wed, 04 Feb 2026 06:06:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-05 19:45:11.396448
- Title: Training A Foundation Model to Represent Graphs as Vectors
- Title(参考訳): グラフをベクトルとして表現するための基礎モデル
- Authors: Qi Feng, Jicong Fan,
- Abstract要約: 本稿では,任意のグラフを意味情報を保存するベクトルとして表現できるグラフ基盤モデルを訓練することを目的とする。
提案モデルの有効性を裏付ける理論的な一般化を提供する。
数ショットのグラフ分類とグラフクラスタリングによる実験結果から,我々のモデルは強いベースラインよりも優れていることが示された。
- 参考スコア(独自算出の注目度): 24.592499205332413
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper aims to train a graph foundation model that is able to represent any graph as a vector preserving structural and semantic information useful for downstream graph-level tasks such as graph classification and graph clustering. To learn the features of graphs from diverse domains while maintaining strong generalization ability to new domains, we propose a multi-graph-based feature alignment method, which constructs weighted graphs using the attributes of all nodes in each dataset and then generates consistent node embeddings. To enhance the consistency of the features from different datasets, we propose a density maximization mean alignment algorithm with guaranteed convergence. The original graphs and generated node embeddings are fed into a graph neural network to achieve discriminative graph representations in contrastive learning. More importantly, to enhance the information preservation from node-level representations to the graph-level representation, we construct a multi-layer reference distribution module without using any pooling operation. We also provide a theoretical generalization bound to support the effectiveness of the proposed model. The experimental results of few-shot graph classification and graph clustering show that our model outperforms strong baselines.
- Abstract(参考訳): 本稿では,グラフ分類やグラフクラスタリングなどの下流グラフレベルのタスクに有用な構造情報および意味情報を保存するベクトルとして,任意のグラフを表現可能なグラフ基盤モデルを訓練することを目的とする。
新しい領域への強力な一般化能力を維持しつつ、多様な領域からグラフの特徴を学習するために、各データセットの全てのノードの属性を用いて重み付きグラフを構築し、一貫したノード埋め込みを生成するマルチグラフベースの特徴アライメント手法を提案する。
異なるデータセットからの特徴の整合性を高めるために,収束性を保証する密度最大化平均アライメントアルゴリズムを提案する。
元のグラフと生成されたノードの埋め込みをグラフニューラルネットワークに入力し、対比学習において識別グラフ表現を実現する。
さらに,ノードレベルの表現からグラフレベルの表現への情報保存を強化するため,プール操作を使わずに多層参照分布モジュールを構築した。
また,提案モデルの有効性を裏付ける理論的な一般化も提供する。
数ショットのグラフ分類とグラフクラスタリングによる実験結果から,我々のモデルは強いベースラインよりも優れていることが示された。
関連論文リスト
- Multi-Relation Graph-Kernel Strengthen Network for Graph-Level Clustering [10.67474681549171]
グラフレベルクラスタリングのためのマルチリレーショナルグラフカーネル強化ネットワーク(MGSN)を提案する。
MGSNは、ノードとグラフ間の多様な意味関係を捉えるために、マルチリレーショナルグラフを構築する。
リレーショナル・アウェアな表現改善戦略を設計し、ビュー間で多関係情報を適応的に整列させる。
論文 参考訳(メタデータ) (2025-04-02T11:17:15Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
本稿では,高次元分布をモデル化し,グラフスケルトンと整合した複雑な関係特徴構造を持つデータの新しい例を生成することの問題点を考察する。
提案するモデルは,タスクを2つのフェーズに分割することで,各データポイントのグラフ構造に制約されたデータ特徴を生成する問題に対処する。
第一に、与えられたグラフのノードに関連する機能の分布をモデル化し、第二に、ノードのフィーチャに条件付きでエッジ機能を補完する。
論文 参考訳(メタデータ) (2022-12-01T11:49:07Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
埋め込みによるグラフリファインメントクラスタリングネットワーク (EGRC-Net) という新しいグラフクラスタリングネットワークを提案する。
EGRC-Netは学習した埋め込みを利用して初期グラフを適応的に洗練し、クラスタリング性能を向上させる。
提案手法はいくつかの最先端手法より一貫して優れている。
論文 参考訳(メタデータ) (2022-11-19T09:08:43Z) - Edge but not Least: Cross-View Graph Pooling [76.71497833616024]
本稿では,重要なグラフ構造情報を活用するために,クロスビューグラフプーリング(Co-Pooling)手法を提案する。
クロスビュー相互作用、エッジビュープーリング、ノードビュープーリングにより、相互にシームレスに強化され、より情報的なグラフレベルの表現が学習される。
論文 参考訳(メタデータ) (2021-09-24T08:01:23Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - Accurate Learning of Graph Representations with Graph Multiset Pooling [45.72542969364438]
本稿では,その構造的依存関係に応じてノード間の相互作用をキャプチャするグラフマルチセットトランス (GMT) を提案する。
実験の結果,GMTはグラフ分類ベンチマークにおいて,最先端のグラフプーリング法を著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-02-23T07:45:58Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Unsupervised Hierarchical Graph Representation Learning by Mutual
Information Maximization [8.14036521415919]
教師なしグラフ表現学習法,Unsupervised Hierarchical Graph Representation (UHGR)を提案する。
本手法は,「ローカル」表現と「グローバル」表現の相互情報の最大化に焦点をあてる。
その結果,提案手法は,いくつかのベンチマークにおいて,最先端の教師付き手法に匹敵する結果が得られることがわかった。
論文 参考訳(メタデータ) (2020-03-18T18:21:48Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
グラフベースのクラスタリングは、クラスタリング領域において重要な役割を果たす。
グラフ畳み込みニューラルネットワークに関する最近の研究は、グラフ型データにおいて驚くべき成功を収めている。
本稿では,グラフの生成的視点に応じて適応的にグラフを構成する汎用データクラスタリングのためのグラフ自動エンコーダを提案する。
論文 参考訳(メタデータ) (2020-02-20T10:11:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。