論文の概要: ERNIE 5.0 Technical Report
- arxiv url: http://arxiv.org/abs/2602.04705v1
- Date: Wed, 04 Feb 2026 16:18:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-05 19:45:11.61339
- Title: ERNIE 5.0 Technical Report
- Title(参考訳): ERNIE 5.0テクニカルレポート
- Authors: Haifeng Wang, Hua Wu, Tian Wu, Yu Sun, Jing Liu, Dianhai Yu, Yanjun Ma, Jingzhou He, Zhongjun He, Dou Hong, Qiwen Liu, Shuohuan Wang, Junyuan Shang, Zhenyu Zhang, Yuchen Ding, Jinle Zeng, Jiabin Yang, Liang Shen, Ruibiao Chen, Weichong Yin, Siyu Ding, Dai Dai, Shikun Feng, Siqi Bao, Bolei He, Yan Chen, Zhenyu Jiao, Ruiqing Zhang, Zeyu Chen, Qingqing Dang, Kaipeng Deng, Jiajun Jiang, Enlei Gong, Guoxia Wang, Yanlin Sha, Yi Liu, Yehan Zheng, Weijian Xu, Jiaxiang Liu, Zengfeng Zeng, Yingqi Qu, Zhongli Li, Zhengkun Zhang, Xiyang Wang, Zixiang Xu, Xinchao Xu, Zhengjie Huang, Dong Wang, Bingjin Chen, Yue Chang, Xing Yuan, Shiwei Huang, Qiao Zhao, Xinzhe Ding, Shuangshuang Qiao, Baoshan Yang, Bihong Tang, Bin Li, Bingquan Wang, Binhan Tang, Binxiong Zheng, Bo Cui, Bo Ke, Bo Zhang, Bowen Zhang, Boyan Zhang, Boyang Liu, Caiji Zhang, Can Li, Chang Xu, Chao Pang, Chao Zhang, Chaoyi Yuan, Chen Chen, Cheng Cui, Chenlin Yin, Chun Gan, Chunguang Chai, Chuyu Fang, Cuiyun Han, Dan Zhang, Danlei Feng, Danxiang Zhu, Dong Sun, Dongbo Li, Dongdong Li, Dongdong Liu, Dongxue Liu, Fan Ding, Fan Hu, Fan Li, Fan Mo, Feisheng Wu, Fengwei Liu, Gangqiang Hu, Gaofeng Lu, Gaopeng Yong, Gexiao Tian, Guan Wang, Guangchen Ni, Guangshuo Wu, Guanzhong Wang, Guihua Liu, Guishun Li, Haibin Li, Haijian Liang, Haipeng Ming, Haisu Wang, Haiyang Lu, Haiye Lin, Han Zhou, Hangting Lou, Hanwen Du, Hanzhi Zhang, Hao Chen, Hao Du, Hao Liu, Hao Zhou, Haochen Jiang, Haodong Tian, Haoshuang Wang, Haozhe Geng, Heju Yin, Hong Chen, Hongchen Xue, Hongen Liu, Honggeng Zhang, Hongji Xu, Hongwei Chen, Hongyang Zhang, Hongyuan Zhang, Hua Lu, Huan Chen, Huan Wang, Huang He, Hui Liu, Hui Zhong, Huibin Ruan, Jiafeng Lu, Jiage Liang, Jiahao Hu, Jiahao Hu, Jiajie Yang, Jialin Li, Jian Chen, Jian Wu, Jianfeng Yang, Jianguang Jiang, Jianhua Wang, Jianye Chen, Jiaodi Liu, Jiarui Zhou, Jiawei Lv, Jiaxin Zhou, Jiaxuan Liu, Jie Han, Jie Sun, Jiefan Fang, Jihan Liu, Jihua Liu, Jing Hu, Jing Qian, Jing Yan, Jingdong Du, Jingdong Wang, Jingjing Wu, Jingyong Li, Jinheng Wang, Jinjin Li, Jinliang Lu, Jinlin Yu, Jinnan Liu, Jixiang Feng, Jiyi Huang, Jiyuan Zhang, Jun Liang, Jun Xia, Jun Yu, Junda Chen, Junhao Feng, Junhong Xiang, Junliang Li, Kai Liu, Kailun Chen, Kairan Su, Kang Hu, Kangkang Zhou, Ke Chen, Ke Wei, Kui Huang, Kun Wu, Kunbin Chen, Lei Han, Lei Sun, Lei Wen, Linghui Meng, Linhao Yu, Liping Ouyang, Liwen Zhang, Longbin Ji, Longzhi Wang, Meng Sun, Meng Tian, Mengfei Li, Mengqi Zeng, Mengyu Zhang, Ming Hong, Mingcheng Zhou, Mingming Huang, Mingxin Chen, Mingzhu Cai, Naibin Gu, Nemin Qiu, Nian Wang, Peng Qiu, Peng Zhao, Pengyu Zou, Qi Wang, Qi Xin, Qian Wang, Qiang Zhu, Qianhui Luo, Qianwei Yang, Qianyue He, Qifei Wu, Qinrui Li, Qiwen Bao, Quan Zhang, Quanxiang Liu, Qunyi Xie, Rongrui Zhan, Rufeng Dai, Rui Peng, Ruian Liu, Ruihao Xu, Ruijie Wang, Ruixi Zhang, Ruixuan Liu, Runsheng Shi, Ruting Wang, Senbo Kang, Shan Lu, Shaofei Yu, Shaotian Gong, Shenwei Hu, Shifeng Zheng, Shihao Guo, Shilong Fan, Shiqin Liu, Shiwei Gu, Shixi Zhang, Shuai Yao, Shuang Zhang, Shuangqiao Liu, Shuhao Liang, Shuwei He, Shuwen Yang, Sijun He, Siming Dai, Siming Wu, Siyi Long, Songhe Deng, Suhui Dong, Suyin Liang, Teng Hu, Tianchan Xu, Tianliang Lv, Tianmeng Yang, Tianyi Wei, Tiezhu Gao, Ting Sun, Ting Zhang, Tingdan Luo, Wei He, Wei Luan, Wei Yin, Wei Zhang, Wei Zhou, Weibao Gong, Weibin Li, Weicheng Huang, Weichong Dang, Weiguo Zhu, Weilong Zhang, Weiqi Tan, Wen Huang, Wenbin Chang, Wenjing Du, Wenlong Miao, Wenpei Luo, Wenquan Wu, Xi Shi, Xi Zhao, Xiang Gao, Xiangguo Zhang, Xiangrui Yu, Xiangsen Wang, Xiangzhe Wang, Xianlong Luo, Xianying Ma, Xiao Tan, Xiaocong Lin, Xiaofei Wang, Xiaofeng Peng, Xiaofeng Wu, Xiaojian Xu, Xiaolan Yuan, Xiaopeng Cui, Xiaotian Han, Xiaoxiong Liu, Xiaoxu Fei, Xiaoxuan Wu, Xiaoyu Wang, Xiaoyu Zhang, Xin Sun, Xin Wang, Xinhui Huang, Xinming Zhu, Xintong Yu, Xinyi Xu, Xinyu Wang, Xiuxian Li, XuanShi Zhu, Xue Xu, Xueying Lv, Xuhong Li, Xulong Wei, Xuyi Chen, Yabing Shi, Yafeng Wang, Yamei Li, Yan Liu, Yanfu Cheng, Yang Gao, Yang Liang, Yang Wang, Yang Wang, Yang Yang, Yanlong Liu, Yannian Fu, Yanpeng Wang, Yanzheng Lin, Yao Chen, Yaozong Shen, Yaqian Han, Yehua Yang, Yekun Chai, Yesong Wang, Yi Song, Yichen Zhang, Yifei Wang, Yifeng Guo, Yifeng Kou, Yilong Chen, Yilong Guo, Yiming Wang, Ying Chen, Ying Wang, Yingsheng Wu, Yingzhan Lin, Yinqi Yang, Yiran Xing, Yishu Lei, Yixiang Tu, Yiyan Chen, Yong Zhang, Yonghua Li, Yongqiang Ma, Yongxing Dai, Yongyue Zhang, Yu Ran, Yu Sun, Yu-Wen Michael Zhang, Yuang Liu, Yuanle Liu, Yuanyuan Zhou, Yubo Zhang, Yuchen Han, Yucheng Wang, Yude Gao, Yuedong Luo, Yuehu Dong, Yufeng Hu, Yuhui Cao, Yuhui Yun, Yukun Chen, Yukun Gao, Yukun Li, Yumeng Zhang, Yun Fan, Yun Ma, Yunfei Zhang, Yunshen Xie, Yuping Xu, Yuqin Zhang, Yuqing Liu, Yurui Li, Yuwen Wang, Yuxiang Lu, Zefeng Cai, Zelin Zhao, Zelun Zhang, Zenan Lin, Zezhao Dong, Zhaowu Pan, Zhaoyu Liu, Zhe Dong, Zhe Zhang, Zhen Zhang, Zhengfan Wu, Zhengrui Wei, Zhengsheng Ning, Zhenxing Li, Zhenyu Li, Zhenyu Qian, Zhenyun Li, Zhi Li, Zhichao Chen, Zhicheng Dong, Zhida Feng, Zhifan Feng, Zhihao Deng, Zhijin Yu, Zhiyang Chen, Zhonghui Zheng, Zhuangzhuang Guo, Zhujun Zhang, Zhuo Sun, Zichang Liu, Zihan Lin, Zihao Huang, Zihe Zhu, Ziheng Zhao, Ziping Chen, Zixuan Zhu, Ziyang Xu, Ziyi Liang, Ziyuan Gao,
- Abstract要約: ERNIE 5.0は、テキスト、画像、ビデオ、オーディオをまたいだ統合されたマルチモーダル理解と生成のための統合された自己回帰基盤モデルである。
ERNIE 5.0は、多様なリソース制約下での大規模デプロイメントの実践的な課題に対処するため、新しい弾力性トレーニングパラダイムを採用している。
ERNIE 5.0は、複数のモードで強い、バランスの取れた性能を実現する。
- 参考スコア(独自算出の注目度): 244.36480708815316
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this report, we introduce ERNIE 5.0, a natively autoregressive foundation model desinged for unified multimodal understanding and generation across text, image, video, and audio. All modalities are trained from scratch under a unified next-group-of-tokens prediction objective, based on an ultra-sparse mixture-of-experts (MoE) architecture with modality-agnostic expert routing. To address practical challenges in large-scale deployment under diverse resource constraints, ERNIE 5.0 adopts a novel elastic training paradigm. Within a single pre-training run, the model learns a family of sub-models with varying depths, expert capacities, and routing sparsity, enabling flexible trade-offs among performance, model size, and inference latency in memory- or time-constrained scenarios. Moreover, we systematically address the challenges of scaling reinforcement learning to unified foundation models, thereby guaranteeing efficient and stable post-training under ultra-sparse MoE architectures and diverse multimodal settings. Extensive experiments demonstrate that ERNIE 5.0 achieves strong and balanced performance across multiple modalities. To the best of our knowledge, among publicly disclosed models, ERNIE 5.0 represents the first production-scale realization of a trillion-parameter unified autoregressive model that supports both multimodal understanding and generation. To facilitate further research, we present detailed visualizations of modality-agnostic expert routing in the unified model, alongside comprehensive empirical analysis of elastic training, aiming to offer profound insights to the community.
- Abstract(参考訳): 本稿では,テキスト,画像,ビデオ,音声間のマルチモーダル理解と生成の統一を目的とした,ネイティブな自己回帰基盤モデルであるERNIE 5.0を紹介する。
すべてのモダリティは、モダリティに依存しないエキスパートルーティングを備えた超スパース混在(MoE)アーキテクチャに基づいて、統合されたnext-group-of-tokens予測目標の下で、スクラッチからトレーニングされる。
ERNIE 5.0は、多様なリソース制約下での大規模デプロイメントの実践的な課題に対処するため、新しい弾力性トレーニングパラダイムを採用している。
単一の事前トレーニング実行内で、モデルは、さまざまな深さ、専門家能力、ルーティングの間隔を持つサブモデルのファミリーを学び、メモリや時間制約のあるシナリオで、パフォーマンス、モデルサイズ、推論遅延の柔軟なトレードオフを可能にする。
さらに,統合基礎モデルへの強化学習のスケールアップという課題を体系的に解決し,超スパースなMoEアーキテクチャと多様なマルチモーダル設定の下での学習後の効率と安定性を保証する。
大規模な実験により、ERNIE 5.0は複数のモードにわたる強いバランスの取れた性能を達成している。
我々の知る限り、ERNIE 5.0は、マルチモーダル理解と生成の両方をサポートする1兆パラメータ統合自己回帰モデルの最初の生産規模の実現である。
さらなる研究を容易にするため, 統一モデルにおけるモダリティに依存しないエキスパート・ルーティングの詳細な可視化と, 弾性トレーニングの包括的経験的分析を行い, コミュニティに深い洞察を提供することを目的とした。
関連論文リスト
- NExT-OMNI: Towards Any-to-Any Omnimodal Foundation Models with Discrete Flow Matching [64.10695425442164]
NExT-OMNI(英語版)は、離散フローパラダイムによる統一モデリングを実現するオープンソース・オムニモーダル・ファンデーション・モデルである。
NExT-OMNIは、大規模なインターリーブ付きテキスト、画像、ビデオ、オーディオデータに基づいて訓練され、マルチモーダル生成および理解ベンチマーク上で競合するパフォーマンスを提供する。
さらなる研究を進めるために、トレーニングの詳細、データプロトコル、およびコードとモデルチェックポイントの両方をオープンソース化する。
論文 参考訳(メタデータ) (2025-10-15T16:25:18Z) - SAIL-Embedding Technical Report: Omni-modal Embedding Foundation Model [49.65930977591188]
マルチモーダル埋め込みモデルは、多様なクロスモーダルタスクに力を与える情報的統一表現を提供することを目的としている。
SAIL-Embeddingはオムニモーダルな埋め込み基盤モデルで、これらの問題に適切なトレーニング戦略とアーキテクチャ設計を通して対処する。
具体的には、コンテンツ対応プログレッシブトレーニングは、さまざまな下流タスクへのモデルの適応性を高め、より豊かなクロスモーダル習熟度を習得することを目的としている。
協調型レコメンデーション強化トレーニングは、シークエンス・ツー・テムとID・ツー・テムの埋め込みから知識を抽出することにより、レコメンデーションシナリオのマルチモーダル表現をさらに適応させる。
論文 参考訳(メタデータ) (2025-10-14T16:43:22Z) - Mixture of Experts in Large Language Models [3.1494372222592224]
MoEアーキテクチャは、最小の計算オーバーヘッドを維持しながら、モデルパフォーマンスを大幅に向上させる。
本分析では,モデルキャパシティの向上,タスク固有性能の向上,モデルキャパシティの効率向上など,MoEの重要なメリットを明らかにした。
このレビューでは、現在の研究の制限、オープンな課題、将来的な方向性について概説し、MoEアーキテクチャとそのアプリケーションにおける継続的なイノベーションの基礎を提供する。
論文 参考訳(メタデータ) (2025-07-15T10:36:43Z) - Will Pre-Training Ever End? A First Step Toward Next-Generation Foundation MLLMs via Self-Improving Systematic Cognition [89.50068130832635]
自己改善認知 (SIcog) は、マルチモーダル知識によって次世代のMLLMを構築するための自己学習フレームワークである。
ステップバイステップの視覚的理解のためのChain-of-Descriptionを提案し、詳細なマルチモーダル推論をサポートするために構造化されたChain-of-Thought(CoT)推論を統合する。
実験は、マルチモーダル認知を増強したMLLMの開発におけるSIcogの有効性を示す。
論文 参考訳(メタデータ) (2025-03-16T00:25:13Z) - MoRE: Unlocking Scalability in Reinforcement Learning for Quadruped Vision-Language-Action Models [34.138699712315]
本稿では、四足歩行ロボットのためのロボット専門家(MoRE)の混合であるビジョンアクション(VLA)モデルを提案する。
MoREは、複数の低ランク適応モジュールを、密集したマルチモーダルな大規模言語モデルの中で異なる専門家として統合する。
実験によると、MoREは6つの異なるスキルで全てのベースラインを上回り、アウト・オブ・ディストリビューションシナリオにおいて優れた一般化能力を示す。
論文 参考訳(メタデータ) (2025-03-11T03:13:45Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETALは、一意のモード近似技術によって達成される全パラメータの0.5%しか必要とせず、トレーニングプロセスに革命をもたらす。
実験の結果,PETALは現状の手法をほとんどのシナリオで上回るだけでなく,完全な微調整モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-12-16T17:13:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。