論文の概要: Path-Guided Flow Matching for Dataset Distillation
- arxiv url: http://arxiv.org/abs/2602.05616v1
- Date: Thu, 05 Feb 2026 12:52:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-06 18:49:08.930808
- Title: Path-Guided Flow Matching for Dataset Distillation
- Title(参考訳): データセット蒸留のためのパスガイドフローマッチング
- Authors: Xuhui Li, Zhengquan Luo, Xiwei Liu, Yongqiang Yu, Zhiqiang Xu,
- Abstract要約: 本稿では, 数ステップでODEを解くことで, 高速な決定論的合成を可能にする, 生成蒸留のための最初のフローマッチングに基づくフレームワークを提案する。
本研究では, ODE-consistent path control のための連続経路-プロトタイプ誘導アルゴリズムを開発し, トラジェクトリが割り当てられたプロトタイプに確実に着地できるようにする。
- 参考スコア(独自算出の注目度): 9.761850986508895
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dataset distillation compresses large datasets into compact synthetic sets with comparable performance in training models. Despite recent progress on diffusion-based distillation, this type of method typically depends on heuristic guidance or prototype assignment, which comes with time-consuming sampling and trajectory instability and thus hurts downstream generalization especially under strong control or low IPC. We propose \emph{Path-Guided Flow Matching (PGFM)}, the first flow matching-based framework for generative distillation, which enables fast deterministic synthesis by solving an ODE in a few steps. PGFM conducts flow matching in the latent space of a frozen VAE to learn class-conditional transport from Gaussian noise to data distribution. Particularly, we develop a continuous path-to-prototype guidance algorithm for ODE-consistent path control, which allows trajectories to reliably land on assigned prototypes while preserving diversity and efficiency. Extensive experiments across high-resolution benchmarks demonstrate that PGFM matches or surpasses prior diffusion-based distillation approaches with fewer steps of sampling while delivering competitive performance with remarkably improved efficiency, e.g., 7.6$\times$ more efficient than the diffusion-based counterparts with 78\% mode coverage.
- Abstract(参考訳): データセット蒸留は、大規模なデータセットを訓練モデルで同等の性能のコンパクトな合成セットに圧縮する。
拡散式蒸留の最近の進歩にもかかわらず、この種の方法は一般的にヒューリスティックなガイダンスやプロトタイプの割り当てに依存しており、時間を要するサンプリングや軌道不安定が伴い、特に強い制御や低いIPCの下で下流の一般化を損なう。
本稿では, 数ステップでODEを解くことで, 高速な決定論的合成を可能にする, 生成蒸留のための最初のフローマッチングベースのフレームワークである \emph{Path-Guided Flow Matching (PGFM) を提案する。
PGFMは凍結されたVAEの潜在空間におけるフローマッチングを行い、ガウスノイズからデータ分布へのクラス条件輸送を学習する。
特に,一貫した経路制御のための連続経路-プロトタイプ誘導アルゴリズムを開発し,多様性と効率を保ちつつ,軌道を確実にプロトタイプに着陸させることができる。
高解像度のベンチマークによる大規模な実験は、PGFMが従来の拡散ベースの蒸留手法にマッチまたは超過し、サンプリングのステップが小さくなり、競争性能が著しく向上し、例えば、7.6$\times$78\%の拡散ベースの蒸留手法よりも効率が良いことを示した。
関連論文リスト
- Temporal Pair Consistency for Variance-Reduced Flow Matching [13.328987133593154]
TPC(Temporal Pair Consistency)は、同じ確率経路に沿ってペア化された時間ステップで速度予測を結合する軽量な分散還元原理である。
フローマッチング内で確立されたTPCは、複数の解像度でCIFAR-10とImageNetのサンプル品質と効率を改善する。
論文 参考訳(メタデータ) (2026-02-04T00:05:21Z) - Score Distillation of Flow Matching Models [67.86066177182046]
我々は、Score Identity Distillation (SiD) を事前訓練されたテキスト対画像フローマッチングモデルに拡張する。
SiDは、データフリーとデータアシストの両方の設定で、これらのモデルですぐに使える。
これは、スコア蒸留がテキストと画像のフローマッチングモデルに広く適用されるという最初の体系的な証拠を提供する。
論文 参考訳(メタデータ) (2025-09-29T17:45:48Z) - Preference Trajectory Modeling via Flow Matching for Sequential Recommendation [50.077447974294586]
シーケンスレコメンデーションは、履歴的なインタラクションシーケンスに基づいて、各ユーザの次の項目を予測する。
FlowRecはシンプルだが効果的なシーケンシャルレコメンデーションフレームワークである。
我々は,ガウス雑音に代えてパーソナライズされた行動に基づく事前分布を構築し,ユーザの嗜好軌跡をモデル化するためのベクトル場を学習する。
論文 参考訳(メタデータ) (2025-08-25T02:55:42Z) - SCoT: Unifying Consistency Models and Rectified Flows via Straight-Consistent Trajectories [31.60548236936739]
本研究では,事前学習した拡散モデルに対する直線一貫性軌道(SCoT)モデルを提案する。
SCoTは、高速サンプリングのための両方のアプローチの利点を享受し、一貫した特性と直線的な性質のトラジェクトリを同時に生成する。
論文 参考訳(メタデータ) (2025-02-24T08:57:19Z) - Optimizing Diffusion Models for Joint Trajectory Prediction and Controllable Generation [49.49868273653921]
拡散モデルは、自律運転における共同軌道予測と制御可能な生成を約束する。
最適ガウス拡散(OGD)と推定クリーンマニフォールド(ECM)誘導を導入する。
提案手法は生成過程の合理化を図り,計算オーバーヘッドを低減した実用的な応用を実現する。
論文 参考訳(メタデータ) (2024-08-01T17:59:59Z) - Consistency Flow Matching: Defining Straight Flows with Velocity Consistency [97.28511135503176]
本稿では,速度場の自己整合性を明示する新しいFM法であるConsistency Flow Matching(Consistency-FM)を紹介する。
予備実験により、一貫性FMは、一貫性モデルよりも4.4倍速く収束することにより、トレーニング効率を著しく向上することが示された。
論文 参考訳(メタデータ) (2024-07-02T16:15:37Z) - Improving Consistency Models with Generator-Augmented Flows [16.049476783301724]
一貫性モデルは、ニューラルネットワークの単一前方通過におけるスコアベース拡散の多段階サンプリングを模倣する。
それらは、一貫性の蒸留と一貫性のトレーニングの2つの方法を学ぶことができる。
本稿では,一貫性モデルから得られたノイズデータを対応する出力へ転送する新しい流れを提案する。
論文 参考訳(メタデータ) (2024-06-13T20:22:38Z) - Diffusion Generative Flow Samplers: Improving learning signals through
partial trajectory optimization [87.21285093582446]
Diffusion Generative Flow Samplers (DGFS) はサンプルベースのフレームワークであり、学習プロセスを短い部分的軌道セグメントに分解することができる。
生成フローネットワーク(GFlowNets)のための理論から着想を得た。
論文 参考訳(メタデータ) (2023-10-04T09:39:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。