論文の概要: How (Not) to Hybridize Neural and Mechanistic Models for Epidemiological Forecasting
- arxiv url: http://arxiv.org/abs/2602.06323v1
- Date: Fri, 06 Feb 2026 02:40:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-09 22:18:26.194249
- Title: How (Not) to Hybridize Neural and Mechanistic Models for Epidemiological Forecasting
- Title(参考訳): 疫学予測のためのニューラルモデルとメカニスティックモデルをハイブリダイズする方法(Not)
- Authors: Yiqi Su, Ray Lee, Jiaming Cui, Naren Ramakrishnan,
- Abstract要約: 監視データからの疫学的予測は難しい問題である。
堅牢なパフォーマンスには、非定常性を明確にする必要があります。
我々は、感染を傾向、季節、残留成分に分解し、これらの信号を用いて持続的な潜伏動態を駆動する。
- 参考スコア(独自算出の注目度): 10.880134384901773
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Epidemiological forecasting from surveillance data is a hard problem and hybridizing mechanistic compartmental models with neural models is a natural direction. The mechanistic structure helps keep trajectories epidemiologically plausible, while neural components can capture non-stationary, data-adaptive effects. In practice, however, many seemingly straightforward couplings fail under partial observability and continually shifting transmission dynamics driven by behavior, waning immunity, seasonality, and interventions. We catalog these failure modes and show that robust performance requires making non-stationarity explicit: we extract multi-scale structure from the observed infection series and use it as an interpretable control signal for a controlled neural ODE coupled to an epidemiological model. Concretely, we decompose infections into trend, seasonal, and residual components and use these signals to drive continuous-time latent dynamics while jointly forecasting and inferring time-varying transmission, recovery, and immunity-loss rates. Across seasonal and non-seasonal settings, including early outbreaks and multi-wave regimes, our approach reduces long-horizon RMSE by 15-35%, improves peak timing error by 1-3 weeks, and lowers peak magnitude bias by up to 30% relative to strong time-series, neural ODE, and hybrid baselines, without relying on auxiliary covariates.
- Abstract(参考訳): 監視データからの疫学的予測は難しい問題であり、機械的コンパートメンタルモデルをニューラルモデルにハイブリダイズすることは自然な方向である。
機械構造は、神経成分が非定常的、データ適応的な効果を捉えるのに対して、線条体を疫学的に妥当に保つのに役立ちます。
しかし実際には、一見単純なカップリングの多くは、部分的な観測可能性の下で失敗し、行動、睡眠免疫、季節性、介入によって引き起こされる伝達ダイナミクスを継続的にシフトさせる。
我々は、これらの障害モードをカタログ化し、ロバストな性能は非定常性を明確にする必要があることを示す:我々は、観察された感染系列からマルチスケール構造を抽出し、疫学モデルに結合した制御されたニューラル・オードの解釈可能な制御信号として使用する。
具体的には, 感染を傾向, 季節, 残留成分に分解し, 持続的潜伏動態を推算し, 時間変化の予測, 回復, 免疫損失率を推定する。
早期発生やマルチウェーブ体制を含む季節的・非季節的な環境下では,長期のRMSEを15~35%削減し,ピークタイミング誤差を1~3週間改善し,補助的共変量に依存することなく,強い時系列,ニューラルODE,ハイブリッドベースラインに対して最大30%低下させる。
関連論文リスト
- Conditional Neural ODE for Longitudinal Parkinson's Disease Progression Forecasting [51.906871559732245]
パーキンソン病(PD)は異質で進化する脳形態計測パターンを示す。
これらの縦方向の軌跡をモデル化することで、機械的な洞察、治療の発展、そして個別化された「デジタルツイン」予測が可能になる。
連続的な個人化されたPD進行予測のための新しいフレームワークであるCNODEを提案する。
論文 参考訳(メタデータ) (2025-11-06T20:16:33Z) - Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
逐次変分自動エンコーダであるLangevinFlowを導入し、潜伏変数の時間的進化をアンダーダム化したLangevin方程式で制御する。
われわれのアプローチは、慣性、減衰、学習されたポテンシャル関数、力などの物理的事前を組み込んで、ニューラルネットワークにおける自律的および非自律的プロセスの両方を表現する。
本手法は,ロレンツ誘引器によって生成される合成神経集団に対する最先端のベースラインより優れる。
論文 参考訳(メタデータ) (2025-07-15T17:57:48Z) - Epidemic-guided deep learning for spatiotemporal forecasting of Tuberculosis outbreak [0.0]
本稿では,先進的な深層学習技術と機械的疫学の原則を融合させるEGDL手法を提案する。
我々のフレームワークは、飽和入射率とグラフラプラシア拡散を付加したネットワーク化された感受性-感染-回復モデル(MN-SIR)に基づいて構築されている。
全国47都道府県と中国本土31県で実施したTB頻度データから,本手法が堅牢かつ正確な予測を行うことを示す。
論文 参考訳(メタデータ) (2025-02-15T12:39:42Z) - Neural Conformal Control for Time Series Forecasting [54.96087475179419]
非定常環境における適応性を高める時系列のニューラルネットワーク共形予測手法を提案する。
提案手法は,ニューラルネットワークエンコーダを用いた補助的マルチビューデータを活用することにより,望ましい対象範囲を達成するために設計されたニューラルネットワークコントローラとして機能する。
予測間隔の整合性に優れたキャリブレーションを組み合わさった手法は, 適用範囲と確率的精度の大幅な向上を実証的に示す。
論文 参考訳(メタデータ) (2024-12-24T03:56:25Z) - Epidemiology-informed Graph Neural Network for Heterogeneity-aware Epidemic Forecasting [46.63739322178277]
最近の研究では、異種時相の流行パターンを抽出する際の時空間ニューラルネットワーク(STGNN)の強い可能性を示している。
HeatGNNは、疫学的にインフォームドされた場所を、時間とともに自分自身の伝達メカニズムを反映するさまざまな場所に埋め込むことを学ぶ。
HeatGNNは、HeatHeatのさまざまな強力なベースラインを異なるサイズで上回る。
論文 参考訳(メタデータ) (2024-11-26T12:29:45Z) - SPADE4: Sparsity and Delay Embedding based Forecasting of Epidemics [2.578242050187029]
流行予測のためのSPADE4(Sprsity and Delay Embedding based Forecasting)を提案する。
本手法は,シミュレーションデータと実データの両方に適用した場合,コンパートメンタルモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-11-11T23:39:48Z) - Epicasting: An Ensemble Wavelet Neural Network (EWNet) for Forecasting
Epidemics [2.705025060422369]
感染性疾患は、世界中でヒトの病気や死亡の原因となっている。
感染拡大の予測は、利害関係者が目の前の状況に対処するのに役立つ。
論文 参考訳(メタデータ) (2022-06-21T19:31:25Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
我々は,多くの地域の流行傾向を同時に予測するテンソル法を開発した。
stelarは離散時間差分方程式のシステムを通じて潜在時間正規化を組み込むことで長期予測を可能にする。
我々は、カウンティレベルと州レベルのCOVID-19データの両方を用いて実験を行い、このモデルが流行の興味深い潜伏パターンを識別できることを示します。
論文 参考訳(メタデータ) (2020-12-08T21:21:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。