論文の概要: Learnable Chernoff Baselines for Inference-Time Alignment
- arxiv url: http://arxiv.org/abs/2602.07738v1
- Date: Sun, 08 Feb 2026 00:09:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-10 20:26:24.783863
- Title: Learnable Chernoff Baselines for Inference-Time Alignment
- Title(参考訳): 推論時間アライメントのための学習可能なチェルノフベースライン
- Authors: Sunil Madhow, Yuchen Liang, Ness Shroff, Yingbin Liang, Yu-Xiang Wang,
- Abstract要約: 本稿では,指数関数的に傾いたカーネルから効率よく,およそサンプリングする方法として,Learnerable Chernoff Baselinesを紹介した。
理想的なモデルに対する全変量保証を確立し、LCBサンプリングが理想的拒絶サンプリングと密接に一致するような連続的および離散的な拡散設定を実証する。
- 参考スコア(独自算出の注目度): 64.81256817158851
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study inference-time reward-guided alignment for generative models. Existing methods often rely on either architecture-specific adaptations or computationally costly inference procedures. We introduce Learnable Chernoff Baselines (LCBs) as a method for efficiently and approximately sampling from the exponentially tilted kernels that arise from KL-regularized reward alignment. Using only black-box sampling access to the pretrained model, LCBs implement a form of rejection sampling with adaptively selected acceptance probabilities, which allows fine-grained control over inference-compute scaling. We establish total-variation guarantees to the ideal aligned model, and demonstrate in both continuous and discrete diffusion settings that LCB sampling closely matches ideal rejection sampling while using substantially fewer queries to the pretrained model.
- Abstract(参考訳): 生成モデルに対する推論時間報酬誘導アライメントについて検討する。
既存の手法はアーキテクチャ固有の適応か計算コストのかかる推論手順のいずれかに依存していることが多い。
我々は,KL正規化報酬アライメントから生じる指数関数的に傾いたカーネルから効率よく,およそのサンプリングを行う方法として,Learable Chernoff Baselines (LCBs)を紹介した。
事前訓練されたモデルへのブラックボックスサンプリングのみを使用して、LCBは適応的に選択された受容確率を持つ拒絶サンプリングの形式を実装し、推論-計算スケーリングのきめ細かい制御を可能にする。
本研究は, 理想的なモデルに対する全変量保証を確立し, LCBサンプリングが事前訓練されたモデルに対して, より少ないクエリを使用しながら, 理想的拒否サンプリングと密に一致した連続的および離散的な拡散設定を実証する。
関連論文リスト
- Inference-Time Scaling of Diffusion Language Models with Particle Gibbs Sampling [70.8832906871441]
我々は、モデルを再訓練することなく、所望の報酬に向けて世代を操る方法を研究する。
従来の手法では、通常は1つの認知軌道内でサンプリングやフィルタを行い、軌道レベルの改善なしに報酬をステップバイステップで最適化する。
本稿では,拡散言語モデル(PG-DLM)の粒子ギブスサンプリングについて紹介する。
論文 参考訳(メタデータ) (2025-07-11T08:00:47Z) - Training-Free Stein Diffusion Guidance: Posterior Correction for Sampling Beyond High-Density Regions [46.59494117137471]
自由拡散誘導の訓練は、追加の訓練なしに既成の分類器を活用する柔軟な方法を提供する。
本稿では,SOC を対象とする新たなトレーニングフリーフレームワークである Stein Diffusion Guidance (SDG) を紹介する。
分子低密度サンプリングタスクの実験は、SDGが標準のトレーニングフリーガイダンス手法を一貫して上回っていることを示唆している。
論文 参考訳(メタデータ) (2025-07-07T21:14:27Z) - Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts [64.34482582690927]
事前学習したスコアベースモデルから得られた熱処理, 幾何平均, 製品分布の配列から, 効率的かつ原理的に抽出する方法を提供する。
本稿では,サンプリング品質を向上させるために,推論時間スケーリングを利用する逐次モンテカルロ(SMC)再サンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-03-04T17:46:51Z) - A Diffusion Model Framework for Unsupervised Neural Combinatorial Optimization [23.972397132797116]
現在のディープラーニングアプローチは、正確なサンプル確率を生み出す生成モデルに依存している。
この研究は、この制限を解除し、高度に表現力のある潜在変数モデルを採用する可能性を開放する手法を導入する。
我々は,データフリーなコンビネーション最適化におけるアプローチを実験的に検証し,幅広いベンチマーク問題に対して新しい最先端の手法を実現することを実証した。
論文 参考訳(メタデータ) (2024-06-03T17:55:02Z) - Bayesian Pseudo-Coresets via Contrastive Divergence [5.479797073162603]
対照的な発散を利用して擬似コアセットを構築するための新しい手法を提案する。
これは擬似コアセット構築プロセスにおける近似の必要性を排除する。
複数のデータセットに対して広範な実験を行い、既存のBPC技術よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-03-20T17:13:50Z) - Posterior Coreset Construction with Kernelized Stein Discrepancy for
Model-Based Reinforcement Learning [78.30395044401321]
我々は、強化学習(MBRL)のための新しいモデルベースアプローチを開発する。
ターゲット遷移モデルの仮定を緩和し、混合モデルの一般的な族に属する。
連続的な制御環境では、壁時計の時間を最大50%削減することができる。
論文 参考訳(メタデータ) (2022-06-02T17:27:49Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。