論文の概要: Prototype-Based Disentanglement for Controllable Dysarthric Speech Synthesis
- arxiv url: http://arxiv.org/abs/2602.08696v1
- Date: Mon, 09 Feb 2026 14:14:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-10 20:26:25.275694
- Title: Prototype-Based Disentanglement for Controllable Dysarthric Speech Synthesis
- Title(参考訳): 変形性関節症音声合成のためのプロトタイプベースアンタングルメント
- Authors: Haoshen Wang, Xueli Zhong, Bingbing Lin, Jia Huang, Xingduo Pan, Shengxiang Liang, Nizhuan Wang, Wai Ting Siok,
- Abstract要約: 変形性音声は、高い変動性とラベル付きデータに制限がある。
現在のアプローチは、合成データ拡張や音声再構成に依存している。
本稿では,プロトタイプベースのディスアングルメント TTS フレームワーク ProtoDisent-TTS を提案する。
- 参考スコア(独自算出の注目度): 2.411338616884766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dysarthric speech exhibits high variability and limited labeled data, posing major challenges for both automatic speech recognition (ASR) and assistive speech technologies. Existing approaches rely on synthetic data augmentation or speech reconstruction, yet often entangle speaker identity with pathological articulation, limiting controllability and robustness. In this paper, we propose ProtoDisent-TTS, a prototype-based disentanglement TTS framework built on a pre-trained text-to-speech backbone that factorizes speaker timbre and dysarthric articulation within a unified latent space. A pathology prototype codebook provides interpretable and controllable representations of healthy and dysarthric speech patterns, while a dual-classifier objective with a gradient reversal layer enforces invariance of speaker embeddings to pathological attributes. Experiments on the TORGO dataset demonstrate that this design enables bidirectional transformation between healthy and dysarthric speech, leading to consistent ASR performance gains and robust, speaker-aware speech reconstruction.
- Abstract(参考訳): 変形性音声は、高い可変性と限られたラベル付きデータを示し、自動音声認識(ASR)と補助音声技術の両方において大きな課題を生んでいる。
既存のアプローチは、合成データ拡張や音声再構成に頼っているが、しばしば話者のアイデンティティを病理的調音で絡めて、制御性や頑健性を制限する。
本稿では,事前学習したテキストから音声へのバックボーン上に構築されたプロトタイプベースのディステンジメントTTSフレームワークであるProtoDisent-TTSを提案する。
病理プロトタイプコードブックは、健常者および変形者の音声パターンの解釈可能かつ制御可能な表現を提供する一方、勾配反転層を有する二重分類器は、病理属性に対する話者埋め込みの不変性を強制する。
TORGOデータセットの実験では、この設計により、健全な音声と変形した音声の双方向変換が可能となり、一貫したASR性能向上と頑健な話者対応音声再構成が実現された。
関連論文リスト
- Adapting Foundation Speech Recognition Models to Impaired Speech: A Semantic Re-chaining Approach for Personalization of German Speech [0.562479170374811]
脳性麻痺や遺伝性障害などの症状による音声障害は、自動音声認識システムに重大な課題をもたらす。
本稿では,ASRモデルをパーソナライズする実用的で軽量なパイプラインを提案し,単語の選択を形式化し,セマンティック・コヒーレンスによる音声障害者データセットを充実させる。
提案手法は,非典型的音声パターンを持つ個人に対するコミュニケーション障壁を低減する可能性を示した。
論文 参考訳(メタデータ) (2025-06-23T15:30:50Z) - Exploring Generative Error Correction for Dysarthric Speech Recognition [12.584296717901116]
本稿では,InterSPEECH 2025における音声アクセシビリティ・プロジェクト・チャレンジのための2段階フレームワークを提案する。
モデルスケールとトレーニング戦略の異なる構成を評価し、特定の仮説選択を取り入れて転写精度を向上させる。
変形性音声認識における音響モデルと言語モデリングの相補的役割について考察する。
論文 参考訳(メタデータ) (2025-05-26T16:06:31Z) - UNIT-DSR: Dysarthric Speech Reconstruction System Using Speech Unit
Normalization [60.43992089087448]
変形性音声再構成システムは、変形性音声を正常な音声に変換することを目的としている。
本稿では,HuBERTのドメイン適応能力を活用して学習効率を向上させるユニットDSRシステムを提案する。
NEDアプローチと比較すると、ユニットDSRシステムは音声単位正規化器とユニットHiFi-GANボコーダのみで構成されている。
論文 参考訳(メタデータ) (2024-01-26T06:08:47Z) - High-Fidelity Speech Synthesis with Minimal Supervision: All Using
Diffusion Models [56.00939852727501]
最小教師付き音声合成は、2種類の離散音声表現を組み合わせることでTSを分離する。
非自己回帰フレームワークは、制御可能性を高め、持続拡散モデルは、多様化された韻律表現を可能にする。
論文 参考訳(メタデータ) (2023-09-27T09:27:03Z) - Accurate synthesis of Dysarthric Speech for ASR data augmentation [5.223856537504927]
Dysarthria は運動性発声障害であり、しばしば発声能力の低下を特徴とする。
本稿では,ASRトレーニングデータ拡張を目的とした新しい音声合成法を提案する。
論文 参考訳(メタデータ) (2023-08-16T15:42:24Z) - Exploiting Cross-domain And Cross-Lingual Ultrasound Tongue Imaging
Features For Elderly And Dysarthric Speech Recognition [55.25565305101314]
調音機能は音響信号歪みに不変であり、音声認識システムにうまく組み込まれている。
本稿では,A2Aモデルにおける24時間TaLコーパスの並列音声・超音波舌画像(UTI)データを利用したクロスドメインおよびクロスランガルA2Aインバージョン手法を提案する。
生成した調音機能を組み込んだ3つのタスクの実験は、ベースラインのTDNNとコンフォーマーASRシステムより一貫して優れていた。
論文 参考訳(メタデータ) (2022-06-15T07:20:28Z) - Speaker Identity Preservation in Dysarthric Speech Reconstruction by
Adversarial Speaker Adaptation [59.41186714127256]
変形性音声再建(DSR)は,変形性音声の品質向上を目的としている。
話者識別に最適化された話者エンコーダ (SE) について検討した。
我々は,新しいマルチタスク学習戦略,すなわち対人話者適応(ASA)を提案する。
論文 参考訳(メタデータ) (2022-02-18T08:59:36Z) - Towards Identity Preserving Normal to Dysarthric Voice Conversion [37.648612382457756]
本稿では, 話者識別を保ちながら, 正常音声を変形音声に変換する枠組みを提案する。
本研究は,(1)患者のストレスを緩和する臨床的意思決定プロセス,(2)顎関節症音声認識のためのデータ増強に不可欠である。
論文 参考訳(メタデータ) (2021-10-15T17:18:02Z) - A Preliminary Study of a Two-Stage Paradigm for Preserving Speaker
Identity in Dysarthric Voice Conversion [50.040466658605524]
変形性音声変換(DVC)における話者同一性維持のための新しいパラダイムを提案する。
変形性音声の質は統計VCによって大幅に改善される。
しかし, 変形性関節症患者の通常の発話は, ほとんど収集できないため, 過去の研究は患者の個性を取り戻すことはできなかった。
論文 参考訳(メタデータ) (2021-06-02T18:41:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。