論文の概要: Artifact Reduction in Undersampled 3D Cone-Beam CTs using a Hybrid 2D-3D CNN Framework
- arxiv url: http://arxiv.org/abs/2602.08727v1
- Date: Mon, 09 Feb 2026 14:36:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-10 20:26:25.296188
- Title: Artifact Reduction in Undersampled 3D Cone-Beam CTs using a Hybrid 2D-3D CNN Framework
- Title(参考訳): ハイブリッド2D-3D CNNフレームワークを用いたアンダーサンプル3次元コーンビームCTのアーチファクト低減
- Authors: Johannes Thalhammer, Tina Dorosti, Sebastian Peterhansl, Daniela Pfeiffer, Franz Pfeiffer, Florian Schaff,
- Abstract要約: アンダーサンプドCTボリュームは、画像品質と診断ユーティリティを劣化させるアーティファクトを導入します。
本稿では,2次元モデルと3次元モデルの強みを組み合わせたハイブリッドディープラーニングフレームワークを提案する。
提案手法は2次元処理の計算効率と3次元モデリングによる整合性とのバランスをとる。
- 参考スコア(独自算出の注目度): 3.460998655164144
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Undersampled CT volumes minimize acquisition time and radiation exposure but introduce artifacts degrading image quality and diagnostic utility. Reducing these artifacts is critical for high-quality imaging. We propose a computationally efficient hybrid deep-learning framework that combines the strengths of 2D and 3D models. First, a 2D U-Net operates on individual slices of undersampled CT volumes to extract feature maps. These slice-wise feature maps are then stacked across the volume and used as input to a 3D decoder, which utilizes contextual information across slices to predict an artifact-free 3D CT volume. The proposed two-stage approach balances the computational efficiency of 2D processing with the volumetric consistency provided by 3D modeling. The results show substantial improvements in inter-slice consistency in coronal and sagittal direction with low computational overhead. This hybrid framework presents a robust and efficient solution for high-quality 3D CT image post-processing. The code of this project can be found on github: https://github.com/J-3TO/2D-3DCNN_sparseview/.
- Abstract(参考訳): アンサンプドCTボリュームは、取得時間と放射線被曝を最小化するが、画像品質と診断ユーティリティを劣化させるアーティファクトを導入する。
これらのアーティファクトを減らすことは、高品質な画像撮影に不可欠である。
本稿では,2次元モデルと3次元モデルの強みを組み合わせた,計算効率のよいハイブリッドディープラーニングフレームワークを提案する。
まず、2D U-Netは、アンダーサンプリングされたCTボリュームを個別にスライスして特徴マップを抽出する。
これらのスライスワイズ機能マップはボリュームに積み重ねられ、3Dデコーダへの入力として使用され、スライス間でコンテキスト情報を用いてアーティファクトフリーな3DCTボリュームを予測する。
提案手法は2次元処理の計算効率と3次元モデリングによる体積整合性とのバランスをとる。
その結果, 計算オーバーヘッドの少ない冠状骨, 矢状骨方向のスライス間整合性は有意に向上した。
このハイブリッド・フレームワークは高品質な3次元CT画像後処理のための堅牢で効率的なソリューションを提供する。
プロジェクトのコードはgithubのhttps://github.com/J-3TO/2D-3DCNN_sparseview/にある。
関連論文リスト
- Repeat and Concatenate: 2D to 3D Image Translation with 3D to 3D Generative Modeling [14.341099905684844]
本稿では,2次元X線と3次元CTライクな再構成が可能な2次元-3次元画像変換法について,簡単な手法で検討する。
我々は,潜伏空間内の複数の2次元ビューにまたがる情報を統合する既存のアプローチが,潜伏符号化中に貴重な信号情報を失うことを観察する。代わりに,2次元ビューを高チャネルの3次元ボリュームに繰り返して,簡単な3次元から3次元生成モデル問題として3次元再構成課題にアプローチする。
この方法では、再構成された3Dボリュームが、2D入力から貴重な情報を保持でき、Swin Uのチャネル状態間で渡される。
論文 参考訳(メタデータ) (2024-06-26T15:18:20Z) - Simultaneous Alignment and Surface Regression Using Hybrid 2D-3D
Networks for 3D Coherent Layer Segmentation of Retinal OCT Images with Full
and Sparse Annotations [32.69359482975795]
本研究は, ハイブリッド2D-3D畳み込みニューラルネットワーク(CNN)を基盤として, OCTボリュームから連続した3次元網膜層表面を得るための新しい枠組みを提案する。
人工的データセットと3つのパブリックな臨床データセットの実験により、我々のフレームワークは、潜在的運動補正のためにBスキャンを効果的に調整できることを示した。
論文 参考訳(メタデータ) (2023-12-04T08:32:31Z) - Spatiotemporal Modeling Encounters 3D Medical Image Analysis:
Slice-Shift UNet with Multi-View Fusion [0.0]
本稿では,2次元CNNにおける3次元特徴をエンコードする2次元モデルSlice SHift UNetを提案する。
より正確にマルチビュー機能は、ボリュームの3次元平面に沿って2次元の畳み込みを実行することで協調的に学習される。
提案手法の有効性は,多モード腹部多臓器軸 (AMOS) と Cranial Vault (BTCV) データセットを越えたマルチアトラスラベリング (Multi-Atlas Labeling Beyond the Cranial Vault) で検証した。
論文 参考訳(メタデータ) (2023-07-24T14:53:23Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) は臨床画像撮影において重要な役割を担っている。
従来の方法では、高品質な3D CBCT画像の再構成には数百の2次元X線投影が必要である。
これにより、放射線線量を減らすため、スパースビューCBCT再構成への関心が高まっている。
本稿では,この問題を解決するために,新しい幾何対応エンコーダデコーダフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-26T14:38:42Z) - DreamFusion: Text-to-3D using 2D Diffusion [52.52529213936283]
テキストと画像の合成の最近の進歩は、何十億もの画像と画像のペアで訓練された拡散モデルによって引き起こされている。
本研究では,事前訓練された2次元テキスト・ツー・イメージ拡散モデルを用いてテキスト・ツー・3次元合成を行うことにより,これらの制約を回避する。
提案手法では,3次元トレーニングデータや画像拡散モデルの変更は必要とせず,事前訓練した画像拡散モデルの有効性を実証する。
論文 参考訳(メタデータ) (2022-09-29T17:50:40Z) - RiCS: A 2D Self-Occlusion Map for Harmonizing Volumetric Objects [68.85305626324694]
カメラ空間における光マーチング (RiCS) は、3次元における前景物体の自己閉塞を2次元の自己閉塞マップに表現する新しい手法である。
表現マップは画像の質を高めるだけでなく,時間的コヒーレントな複雑な影効果をモデル化できることを示す。
論文 参考訳(メタデータ) (2022-05-14T05:35:35Z) - Weakly Supervised Volumetric Image Segmentation with Deformed Templates [80.04326168716493]
対象対象物の表面にスパースな3次元点のセットのみを提供する必要があるという意味で、真に弱い教師付きアプローチを提案する。
監督コストの削減により、3Dの弱スーパービジョンに対する従来のアプローチよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-06-07T22:09:34Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
大規模3次元データリポジトリから抽出した3次元特徴を有効活用し,RGB画像から抽出した2次元特徴を向上する手法を提案する。
まず,事前学習した3Dネットワークから3D知識を抽出して2Dネットワークを監督し,トレーニング中の2D特徴からシミュレーションされた3D特徴を学習する。
次に,2次元の正規化方式を設計し,2次元特徴と3次元特徴のキャリブレーションを行った。
第3に,非ペアの3dデータを用いたトレーニングのフレームワークを拡張するために,意味を意識した対向的トレーニングモデルを設計した。
論文 参考訳(メタデータ) (2021-04-06T02:22:24Z) - Spatial Context-Aware Self-Attention Model For Multi-Organ Segmentation [18.76436457395804]
マルチ組織セグメンテーションは、医学画像解析におけるディープラーニングの最も成功した応用の1つである。
深部畳み込みニューラルネット(CNN)は,CT画像やMRI画像上で臨床応用画像のセグメンテーション性能を達成する上で非常に有望である。
本研究では,高分解能2次元畳み込みによりセグメンテーションを実現する3次元モデルと2次元モデルを組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2020-12-16T21:39:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。