論文の概要: Large Language Models for Geolocation Extraction in Humanitarian Crisis Response
- arxiv url: http://arxiv.org/abs/2602.08872v1
- Date: Mon, 09 Feb 2026 16:34:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-10 20:26:25.366007
- Title: Large Language Models for Geolocation Extraction in Humanitarian Crisis Response
- Title(参考訳): 人道危機対応におけるジオロケーション抽出のための大規模言語モデル
- Authors: G. Cafferata, T. Demarco, K. Kalimeri, Y. Mejova, M. G. Beiró,
- Abstract要約: 本稿では,大規模言語モデルが人文的文書から位置情報を抽出する際の地理的格差に対処できるかどうかを検討する。
LLMをベースとした名前付きエンティティ認識とエージェントベースのジオコーディングモジュールを組み合わせた2段階のフレームワークを提案する。
その結果,LLM法は人道的テキストからの位置抽出の精度と公平性の両方を著しく向上させることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Humanitarian crises demand timely and accurate geographic information to inform effective response efforts. Yet, automated systems that extract locations from text often reproduce existing geographic and socioeconomic biases, leading to uneven visibility of crisis-affected regions. This paper investigates whether Large Language Models (LLMs) can address these geographic disparities in extracting location information from humanitarian documents. We introduce a two-step framework that combines few-shot LLM-based named entity recognition with an agent-based geocoding module that leverages context to resolve ambiguous toponyms. We benchmark our approach against state-of-the-art pretrained and rule-based systems using both accuracy and fairness metrics across geographic and socioeconomic dimensions. Our evaluation uses an extended version of the HumSet dataset with refined literal toponym annotations. Results show that LLM-based methods substantially improve both the precision and fairness of geolocation extraction from humanitarian texts, particularly for underrepresented regions. By bridging advances in LLM reasoning with principles of responsible and inclusive AI, this work contributes to more equitable geospatial data systems for humanitarian response, advancing the goal of leaving no place behind in crisis analytics.
- Abstract(参考訳): 人道的な危機は、効果的な対応活動を伝えるために、タイムリーで正確な地理的情報を要求する。
しかし、テキストから位置を抽出する自動システムは、しばしば既存の地理的・社会経済的バイアスを再現する。
本稿では,Large Language Models (LLMs) が人道的文書から位置情報を抽出する際の地理的格差に対処できるかどうかを検討する。
本稿では,LLMをベースとした名前付きエンティティ認識と,コンテキストを利用して不明瞭なトポニムを解決するエージェントベースのジオコーディングモジュールを組み合わせた2段階のフレームワークを提案する。
我々は、地理的および社会経済的次元の精度と公平度の測定値を用いて、最先端の事前訓練とルールベースのシステムに対するアプローチをベンチマークする。
本評価では,HumSetデータセットの拡張バージョンと改良されたリテラル・トポニムアノテーションを用いた。
以上の結果から,LLMに基づく手法は人道的テキストからの位置抽出の精度と公平性の両方を著しく向上させることがわかった。
責任と包括的AIの原則によるLCM推論の進歩をブリッジすることで、この研究は、人道的応答のためのより公平な地理空間データシステムに貢献し、危機分析に何の場所も残さないという目標を前進させる。
関連論文リスト
- GeoSR: Cognitive-Agentic Framework for Probing Geospatial Knowledge Boundaries via Iterative Self-Refinement [4.026524042818433]
GeoSRは自己修正型のエージェント推論フレームワークで、コア地理的原則を反復予測ループに組み込む。
物理世界特性推定から社会経済予測に至るまでのタスクにおけるGeoSRの検証を行う。
論文 参考訳(メタデータ) (2025-08-06T04:45:34Z) - From Pixels to Places: A Systematic Benchmark for Evaluating Image Geolocalization Ability in Large Language Models [14.178064117544082]
画像のジオローカライゼーションは、危機対応、デジタル法医学、位置に基づくインテリジェンスなどの応用において重要である。
大規模言語モデル(LLM)の最近の進歩は、視覚的推論の新しい機会を提供する。
我々は, 精度, 距離誤差, 地理空間バイアス, 推論過程を体系的に評価する, imageO-Bench というベンチマークを導入する。
論文 参考訳(メタデータ) (2025-08-03T06:04:33Z) - Recognition through Reasoning: Reinforcing Image Geo-localization with Large Vision-Language Models [47.98900725310249]
新しいパイプラインは、多様なソーシャルメディアイメージを使用して推論指向のジオローカライゼーションデータセットMP16-Reasonを構築する。
GLOBEには、ローカライズビリティアセスメント、ビジュアルキュー推論、位置情報の精度を共同で向上するタスク固有の報酬が組み込まれている。
その結果,GLOBEはジオローカライゼーションタスクにおいて,最先端のオープンソースLVLMよりも優れていることがわかった。
論文 参考訳(メタデータ) (2025-06-17T16:07:58Z) - GRE Suite: Geo-localization Inference via Fine-Tuned Vision-Language Models and Enhanced Reasoning Chains [20.788130896943663]
Geo Reason Enhancement (GRE) Suiteは、解釈可能な位置推論のための構造化推論チェーンを備えたビジュアル言語モデルを拡張する新しいフレームワークである。
まず、GRE30Kという、きめ細かい視覚的・文脈的分析を容易にするために設計された高品質なジオローカライゼーション推論データセットを紹介する。
次に,シーン属性,局所的詳細,意味的特徴を段階的に推測する多段階推論手法を用いて,GREモデルを提案する。
論文 参考訳(メタデータ) (2025-05-24T13:48:57Z) - OmniGeo: Towards a Multimodal Large Language Models for Geospatial Artificial Intelligence [51.0456395687016]
マルチモーダル大言語モデル(LLM)が人工知能の新しいフロンティアをオープンした。
地理空間応用に適したMLLM(OmniGeo)を提案する。
自然言語理解の長所と空間的推論の長所を組み合わせることで,GeoAIシステムの指示追従能力と精度を高めることができる。
論文 参考訳(メタデータ) (2025-03-20T16:45:48Z) - GeoLLM: Extracting Geospatial Knowledge from Large Language Models [49.20315582673223]
大規模言語モデルから地理空間的知識を効果的に抽出する新しい手法であるGeoLLMを提案する。
我々は、人口密度や経済生活の計測など、国際社会への関心の中心となる複数の課題にまたがるアプローチの有用性を実証する。
実験の結果, LLMは試料効率が高く, 地理空間情報に富み, 世界中のロバストであることがわかった。
論文 参考訳(メタデータ) (2023-10-10T00:03:23Z) - Geo-Encoder: A Chunk-Argument Bi-Encoder Framework for Chinese
Geographic Re-Ranking [61.60169764507917]
中国の地理的再ランクタスクは、検索された候補者の中で最も関連性の高い住所を見つけることを目的としている。
そこで我々は,中国語の地理的意味論をより効果的に統合する,革新的なフレームワークであるGeo-Encoderを提案する。
論文 参考訳(メタデータ) (2023-09-04T13:44:50Z) - GeoGLUE: A GeoGraphic Language Understanding Evaluation Benchmark [56.08664336835741]
我々はGeoGLUEと呼ばれるGeoGraphic Language Understanding Evaluationベンチマークを提案する。
オープンソースの地理資源からデータを収集し、6つの自然言語理解タスクを導入する。
我々は,GeoGLUEベンチマークの有効性と意義を示す一般ベースラインの評価実験と解析を行った。
論文 参考訳(メタデータ) (2023-05-11T03:21:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。