論文の概要: A Universal Action Space for General Behavior Analysis
- arxiv url: http://arxiv.org/abs/2602.09518v1
- Date: Tue, 10 Feb 2026 08:22:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-11 20:17:43.446687
- Title: A Universal Action Space for General Behavior Analysis
- Title(参考訳): 一般行動解析のためのユニバーサルアクション空間
- Authors: Hung-Shuo Chang, Yue-Cheng Yang, Yu-Hsi Chen, Wei-Hsin Chen, Chien-Yao Wang, James C. Liao, Chien-Chang Chen, Hen-Hsen Huang, Hong-Yuan Mark Liao,
- Abstract要約: 動物や人間の行動を分析することは、コンピュータビジョンにおいて長年、難しい課題だった。
既存のラベル付きヒューマンアクションデータセットを用いた大規模ユニバーサルアクションスペース(UAS)を構築した。
次に、このUASを哺乳類とチンパンジーの行動データセットの分析と分類の基礎として使用します。
- 参考スコア(独自算出の注目度): 25.041879858115717
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Analyzing animal and human behavior has long been a challenging task in computer vision. Early approaches from the 1970s to the 1990s relied on hand-crafted edge detection, segmentation, and low-level features such as color, shape, and texture to locate objects and infer their identities-an inherently ill-posed problem. Behavior analysis in this era typically proceeded by tracking identified objects over time and modeling their trajectories using sparse feature points, which further limited robustness and generalization. A major shift occurred with the introduction of ImageNet by Deng and Li in 2010, which enabled large-scale visual recognition through deep neural networks and effectively served as a comprehensive visual dictionary. This development allowed object recognition to move beyond complex low-level processing toward learned high-level representations. In this work, we follow this paradigm to build a large-scale Universal Action Space (UAS) using existing labeled human-action datasets. We then use this UAS as the foundation for analyzing and categorizing mammalian and chimpanzee behavior datasets. The source code is released on GitHub at https://github.com/franktpmvu/Universal-Action-Space.
- Abstract(参考訳): 動物や人間の行動を分析することは、コンピュータビジョンにおいて長年、難しい課題だった。
1970年代から1990年代にかけての初期のアプローチは、手作りのエッジ検出、セグメンテーション、色、形状、テクスチャといった低レベルの特徴に頼っていた。
この時代の行動分析は、時間とともに特定された物体を追跡し、その軌跡をスパース特徴点を用いてモデル化することで進行し、ロバスト性や一般化はさらに制限された。
2010年、DengとLiによるImageNetの導入によって大きな変化が起こり、ディープニューラルネットワークによる大規模な視覚認識が可能になり、包括的なビジュアル辞書として効果的に機能した。
この開発により、オブジェクト認識は複雑な低レベル処理を超えて、学習された高レベル表現へと移行することができた。
本研究では,既存のラベル付きヒューマンアクションデータセットを用いた大規模ユニバーサルアクションスペース(UAS)を構築するために,このパラダイムに従う。
次に、このUASを哺乳類とチンパンジーの行動データセットの分析と分類の基礎として使用します。
ソースコードはGitHubでhttps://github.com/franktpmvu/Universal-Action-Spaceで公開されている。
関連論文リスト
- How To Not Train Your Dragon: Training-free Embodied Object Goal
Navigation with Semantic Frontiers [94.46825166907831]
Embodied AIにおけるオブジェクトゴールナビゲーション問題に対処するためのトレーニング不要のソリューションを提案する。
本手法は,古典的な視覚的同時ローカライゼーションとマッピング(V-SLAM)フレームワークに基づく,構造化されたシーン表現を構築する。
本手法は,言語先行情報とシーン統計に基づいてシーングラフのセマンティクスを伝搬し,幾何学的フロンティアに意味知識を導入する。
論文 参考訳(メタデータ) (2023-05-26T13:38:33Z) - Universal Object Detection with Large Vision Model [79.06618136217142]
本研究は,大規模多領域普遍物体検出問題に焦点をあてる。
これらの課題に対処するために,ラベル処理,階層型設計,資源効率のよいモデルトレーニングを提案する。
本手法は,ロバスト・ビジョン・チャレンジ2022のオブジェクト検出トラックにおいて,優れた2位の地位を確保した。
論文 参考訳(メタデータ) (2022-12-19T12:40:13Z) - Learn to Predict How Humans Manipulate Large-sized Objects from
Interactive Motions [82.90906153293585]
本稿では,動きデータと動的記述子を融合させるグラフニューラルネットワークHO-GCNを提案する。
動的記述子を消費するネットワークは、最先端の予測結果が得られ、未確認オブジェクトへのネットワークの一般化に役立つことを示す。
論文 参考訳(メタデータ) (2022-06-25T09:55:39Z) - Discovering Objects that Can Move [55.743225595012966]
手動ラベルなしでオブジェクトを背景から分離する、オブジェクト発見の問題について検討する。
既存のアプローチでは、色、テクスチャ、位置などの外観の手がかりを使用して、ピクセルをオブジェクトのような領域に分類する。
私たちは、動的オブジェクト -- 世界で独立して動くエンティティ -- にフォーカスすることを選びます。
論文 参考訳(メタデータ) (2022-03-18T21:13:56Z) - Beyond Tracking: Using Deep Learning to Discover Novel Interactions in
Biological Swarms [3.441021278275805]
本稿では,システムレベルの状態を全体像から直接予測するディープ・ネットワーク・モデルを提案する。
結果の予測モデルは、人間の理解した予測モデルに基づいていないため、説明モジュールを使用する。
これは、行動生態学における人工知能の例である。
論文 参考訳(メタデータ) (2021-08-20T22:50:41Z) - REGRAD: A Large-Scale Relational Grasp Dataset for Safe and
Object-Specific Robotic Grasping in Clutter [52.117388513480435]
本稿では,オブジェクト間の関係のモデル化を継続するregradという新しいデータセットを提案する。
データセットは2D画像と3Dポイントクラウドの両方で収集されます。
ユーザは、好きなだけ多くのデータを生成するために、自由に独自のオブジェクトモデルをインポートできる。
論文 参考訳(メタデータ) (2021-04-29T05:31:21Z) - Learning to Track with Object Permanence [61.36492084090744]
共同物体の検出と追跡のためのエンドツーエンドのトレーニング可能なアプローチを紹介します。
私たちのモデルは、合成データと実データで共同トレーニングされ、KITTIおよびMOT17データセットの最先端を上回ります。
論文 参考訳(メタデータ) (2021-03-26T04:43:04Z) - Combining Semantic Guidance and Deep Reinforcement Learning For
Generating Human Level Paintings [22.889059874754242]
脳卒中に基づく非フォトリアリスティック画像の生成は、コンピュータビジョンコミュニティにおいて重要な問題である。
従来の手法は、前景オブジェクトの位置、規模、正当性にほとんど変化のないデータセットに限られていた。
本研究では,1)前景と背景の筆画の区別を学習するための2段階の塗装手順を備えたセマンティック・ガイダンス・パイプラインを提案する。
論文 参考訳(メタデータ) (2020-11-25T09:00:04Z) - Co-training for On-board Deep Object Detection [0.0]
人間のラベル付きバウンディングボックスを頼りにすることにより、最高のディープビジョンベースのオブジェクト検出器を教師付きで訓練する。
共同学習は、未ラベル画像における自己ラベルオブジェクトの半教師付き学習手法である。
我々は、協調学習がオブジェクトのラベル付けを緩和し、タスクに依存しないドメイン適応と単独で作業するためのパラダイムであることを示す。
論文 参考訳(メタデータ) (2020-08-12T19:08:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。