論文の概要: From Classical to Topological Neural Networks Under Uncertainty
- arxiv url: http://arxiv.org/abs/2602.10266v1
- Date: Tue, 10 Feb 2026 20:21:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-12 21:44:01.268639
- Title: From Classical to Topological Neural Networks Under Uncertainty
- Title(参考訳): 不確実性下における古典的ニューラルネットワークからトポロジカルニューラルネットワークへ
- Authors: Sarah Harkins Dayton, Layal Bou Hamdan, Ioannis D. Schizas, David L. Boothe, Vasileios Maroulas,
- Abstract要約: この章では、ニューラルネットワーク、トポロジカルデータ分析、およびトポロジカルディープラーニング技術について、軍事領域における人工知能の可能性の最大化について論じる。
我々は,画像,ビデオ,音声,時系列認識,不正検出,リンク予測など,グラフィカルデータにまたがる実用的応用を強調した。
- 参考スコア(独自算出の注目度): 0.5985483103102681
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This chapter explores neural networks, topological data analysis, and topological deep learning techniques, alongside statistical Bayesian methods, for processing images, time series, and graphs to maximize the potential of artificial intelligence in the military domain. Throughout the chapter, we highlight practical applications spanning image, video, audio, and time-series recognition, fraud detection, and link prediction for graphical data, illustrating how topology-aware and uncertainty-aware models can enhance robustness, interpretability, and generalization.
- Abstract(参考訳): この章では、ニューラルネットワーク、トポロジカルデータ分析、およびトポロジカルディープラーニング技術について、統計ベイズ的手法とともに、画像、時系列、グラフを処理して、軍事領域における人工知能の可能性の最大化について論じる。
本章では,画像,ビデオ,音声,時系列認識,不正検出,およびグラフデータのリンク予測を対象とし,トポロジ認識モデルと不確実性認識モデルが堅牢性,解釈可能性,一般化をいかに向上させるかを示す。
関連論文リスト
- Enhancing Graph Representation Learning with Localized Topological Features [29.562627708301694]
永続ホモロジー理論に基づいてグラフのリッチ接続情報を抽出する原理的手法を提案する。
本手法は,グラフニューラルネットワークの表現学習を強化するためにトポロジ的特徴を利用する。
論文 参考訳(メタデータ) (2025-01-15T22:12:27Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
オンロジはドメインの知識とメタデータを表現するために広く使われている。
直接支援できる論理的推論は、学習、近似、予測において非常に限られています。
1つの簡単な解決策は、統計分析と機械学習を統合することである。
論文 参考訳(メタデータ) (2024-06-16T14:49:19Z) - Nonlinear classification of neural manifolds with contextual information [6.292933471495322]
本稿では,入力空間における遅延方向を文脈情報に関連付ける理論フレームワークを提案する。
我々は、多様体幾何学と文脈相関に依存する文脈依存多様体容量の正確な公式を導出する。
我々のフレームワークの表現性の向上は、階層階層の初期段階のディープネットワークにおける表現再構成を捉えるが、以前は分析にはアクセスできない。
論文 参考訳(メタデータ) (2024-05-10T23:37:31Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Graph Foundation Models: Concepts, Opportunities and Challenges [66.37994863159861]
ファンデーションモデルは、さまざまな人工知能アプリケーションにおいて重要なコンポーネントとして現れてきた。
一般化と適応における基礎モデルの能力は、グラフ機械学習研究者を動機付け、新しいグラフ学習パラダイムを開発する可能性について議論する。
本稿では,グラフ基礎モデル(GFM)の概念を紹介し,その重要な特徴と基礎技術について概説する。
論文 参考訳(メタデータ) (2023-10-18T09:31:21Z) - Graph Neural Operators for Classification of Spatial Transcriptomics
Data [1.408706290287121]
マウス脳組織サンプルにおける脳領域の予測に対する神経オペレーターの適用の有効性を検証するために,様々なグラフニューラルネットワークアプローチを取り入れた研究を提案する。
グラフニューラルネットワークのアプローチでは,F1スコアが72%近く向上し,すべてのベースラインやグラフネットワークのアプローチを上回った。
論文 参考訳(メタデータ) (2023-02-01T18:32:06Z) - An energy-based model for neuro-symbolic reasoning on knowledge graphs [0.0]
産業自動化システムを特徴付けるためのエネルギーベースのグラフ埋め込みアルゴリズムを提案する。
複数のドメインからの知識を組み合わせることで、学習モデルはコンテキスト対応の予測を行うことができる。
提示されたモデルは、生物学的にインスパイアされたニューラルアーキテクチャにマッピング可能であり、グラフ埋め込み法とニューロモルフィックコンピューティングの間の最初のブリッジとして機能する。
論文 参考訳(メタデータ) (2021-10-04T18:02:36Z) - A Survey on Graph-Based Deep Learning for Computational Histopathology [36.58189530598098]
我々は、デジタル病理と生検画像パッチの分析に機械学習と深層学習の利用が急速に拡大しているのを目撃した。
畳み込みニューラルネットワークを用いたパッチワイド機能に関する従来の学習は、グローバルなコンテキスト情報をキャプチャしようとする際のモデルを制限する。
本稿では,グラフに基づく深層学習の概念的基盤を提供し,腫瘍の局在と分類,腫瘍浸潤とステージング,画像検索,生存予測の現在の成功について論じる。
論文 参考訳(メタデータ) (2021-07-01T07:50:35Z) - Deep Learning for Community Detection: Progress, Challenges and
Opportunities [79.26787486888549]
この記事では、ディープニューラルネットワークにおける様々なフレームワーク、モデル、アルゴリズムの貢献について要約する。
この記事では、ディープニューラルネットワークにおける様々なフレームワーク、モデル、アルゴリズムの貢献について要約する。
論文 参考訳(メタデータ) (2020-05-17T11:22:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。