論文の概要: Automatic Simplification of Common Vulnerabilities and Exposures Descriptions
- arxiv url: http://arxiv.org/abs/2602.11982v1
- Date: Thu, 12 Feb 2026 14:12:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-13 21:07:25.863596
- Title: Automatic Simplification of Common Vulnerabilities and Exposures Descriptions
- Title(参考訳): 共通脆弱性の自動簡易化と露出記述
- Authors: Varpu Vehomäki, Kimmo K. Kaski,
- Abstract要約: 我々は,大言語モデル(LLM)が,共通脆弱性と露出記述の自動テキスト単純化(ATS)にどのように活用できるかを検討することに注力する。
我々は、サイバーセキュリティATSのベースラインと、サイバーセキュリティの専門家2グループによって2回の調査ラウンドで評価された40のCVE記述のテストデータセットを作成しました。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding cyber security is increasingly important for individuals and organizations. However, a lot of information related to cyber security can be difficult to understand to those not familiar with the topic. In this study, we focus on investigating how large language models (LLMs) could be utilized in automatic text simplification (ATS) of Common Vulnerability and Exposure (CVE) descriptions. Automatic text simplification has been studied in several contexts, such as medical, scientific, and news texts, but it has not yet been studied to simplify texts in the rapidly changing and complex domain of cyber security. We created a baseline for cyber security ATS and a test dataset of 40 CVE descriptions, evaluated by two groups of cyber security experts in two survey rounds. We have found that while out-of-the box LLMs can make the text appear simpler, they struggle with meaning preservation. Code and data are available at https://version.aalto.fi/gitlab/vehomav1/simplification\_nmi.
- Abstract(参考訳): サイバーセキュリティを理解することは、個人や組織にとってますます重要である。
しかし、サイバーセキュリティに関する多くの情報は、この話題に詳しい人には理解が難しい。
本研究では,CVE(Common Vulnerability and Exposure)記述の自動テキスト単純化(ATS)において,大規模言語モデル(LLM)をどのように活用できるかを検討する。
自動化されたテキストの単純化は、医学、科学、ニューステキストなどいくつかの文脈で研究されてきたが、サイバーセキュリティの急速な変化と複雑な領域におけるテキストの単純化についてはまだ研究されていない。
我々は、サイバーセキュリティATSのベースラインと、サイバーセキュリティの専門家2グループによって2回の調査ラウンドで評価された40のCVE記述のテストデータセットを作成しました。
LLMのアウトオブザボックスは、テキストをシンプルに見せることができるが、それらは意味保存に苦戦している。
コードとデータはhttps://version.aalto.fi/gitlab/vehomav1/simplification\_nmiで公開されている。
関連論文リスト
- Illusions of Relevance: Using Content Injection Attacks to Deceive Retrievers, Rerankers, and LLM Judges [52.96987928118327]
検索,リランカー,大型言語モデル(LLM)の埋め込みモデルは,コンテンツインジェクション攻撃に対して脆弱であることがわかった。
主な脅威は,(1) 意味不明な内容や有害な内容の挿入,(2) 関連性を高めるために,問合せ全体あるいはキークエリ用語の挿入,の2つである。
本研究は, 注射内容の配置や関連物質と非関連物質とのバランスなど, 攻撃の成功に影響を与える要因を系統的に検討した。
論文 参考訳(メタデータ) (2025-01-30T18:02:15Z) - Large Language Models for Cyber Security: A Systematic Literature Review [17.073186844004148]
大規模言語モデル(LLM)は、サイバーセキュリティを含むさまざまなアプリケーションドメインで人工知能を活用する新たな機会を開いた。
LLMは、脆弱性検出、マルウェア分析、ネットワーク侵入検出など、幅広いサイバーセキュリティタスクに適用されている。
LLMベースの自律エージェントは、シングルタスク実行から複雑なマルチステップセキュリティのオーケストレーションへのパラダイムシフトを表している。
論文 参考訳(メタデータ) (2024-05-08T02:09:17Z) - InfoLossQA: Characterizing and Recovering Information Loss in Text Simplification [60.10193972862099]
本研究は, 簡易化による情報損失を問合せ・問合せ形式で特徴づけ, 回復する枠組みを提案する。
QAペアは、読者がテキストの知識を深めるのに役立つように設計されている。
論文 参考訳(メタデータ) (2024-01-29T19:00:01Z) - Red Teaming Language Model Detectors with Language Models [114.36392560711022]
大規模言語モデル(LLM)は、悪意のあるユーザによって悪用された場合、重大な安全性と倫理的リスクをもたらす。
近年,LLM生成テキストを検出し,LLMを保護するアルゴリズムが提案されている。
1) LLMの出力中の特定の単語を, 文脈が与えられたシノニムに置き換えること, 2) 生成者の書き方を変更するための指示プロンプトを自動で検索すること,である。
論文 参考訳(メタデータ) (2023-05-31T10:08:37Z) - Elaborative Simplification as Implicit Questions Under Discussion [51.17933943734872]
本稿では,QUD フレームワークのレンズによる共同作業の簡略化について考察する。
本研究は,QUDを明示的にモデル化することで,作業の単純化と,作業内容と作業内容の関連性について,重要な理解が得られていることを示す。
論文 参考訳(メタデータ) (2023-05-17T17:26:16Z) - Exploring the Limits of Transfer Learning with Unified Model in the
Cybersecurity Domain [17.225973170682604]
生成型マルチタスクモデル Unified Text-to-Text Cybersecurity (UTS) を導入する。
UTSはマルウェアレポート、フィッシングサイトURL、プログラミングコード構造、ソーシャルメディアデータ、ブログ、ニュース記事、フォーラムの投稿で訓練されている。
UTSはいくつかのサイバーセキュリティデータセットの性能を改善している。
論文 参考訳(メタデータ) (2023-02-20T22:21:26Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
我々は,NLP(Natural Language Processing)と,研究におけるセキュリティ情報抽出に使用される機械学習技術の評価と比較を行った。
本研究では,攻撃者の戦術や手法に従って非構造化テキストを自動的に分類するデータ処理パイプラインを提案する。
論文 参考訳(メタデータ) (2022-07-18T09:59:21Z) - A Deep Learning Approach for Ontology Enrichment from Unstructured Text [2.932750332087746]
既存のWeb上の攻撃、コントロール、アドバイザリの情報脆弱性は、セキュリティ分析を表現し、実行する機会を提供する。
自然言語処理とMLモデルに基づくオントロジーエンリッチメントアルゴリズムは、単語、フレーズ、文における概念の文脈的抽出に問題がある。
大規模なDBデータセットと2.8GBのウィキペディアコーパスとUniversal Sentenceでトレーニングされた双方向LSTMは、ISOベースの情報セキュリティを強化するためにデプロイされる。
論文 参考訳(メタデータ) (2021-12-16T01:32:21Z) - OntoEnricher: A Deep Learning Approach for Ontology Enrichment from
Unstructured Text [2.707154152696381]
Web上で利用可能な脆弱性、コントロール、アドバイザリに関する既存の情報は、知識を表現し、関心事の一部を緩和するために分析を行う機会を提供する。
これは情報セキュリティの動的かつ自動化された強化を必要とする。
自然言語処理とMLモデルに基づく既存のオントロジーエンリッチメントアルゴリズムは、単語、フレーズ、文における概念の文脈的抽出に問題がある。
論文 参考訳(メタデータ) (2021-02-08T09:43:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。