論文の概要: OMNI-LEAK: Orchestrator Multi-Agent Network Induced Data Leakage
- arxiv url: http://arxiv.org/abs/2602.13477v1
- Date: Fri, 13 Feb 2026 21:32:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-17 14:17:28.046647
- Title: OMNI-LEAK: Orchestrator Multi-Agent Network Induced Data Leakage
- Title(参考訳): OMNI-LEAK:オーケストレータマルチエージェントネットワークによるデータ漏洩
- Authors: Akshat Naik, Jay Culligan, Yarin Gal, Philip Torr, Rahaf Aljundi, Alasdair Paren, Adel Bibi,
- Abstract要約: オーケストレータ設定として知られる,一般的なマルチエージェントパターンのセキュリティ脆弱性について検討する。
本報告では,フロンティアモデルの攻撃カテゴリに対する感受性を報告し,推論モデルと非推論モデルの両方が脆弱であることが確認された。
- 参考スコア(独自算出の注目度): 59.3826294523924
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As Large Language Model (LLM) agents become more capable, their coordinated use in the form of multi-agent systems is anticipated to emerge as a practical paradigm. Prior work has examined the safety and misuse risks associated with agents. However, much of this has focused on the single-agent case and/or setups missing basic engineering safeguards such as access control, revealing a scarcity of threat modeling in multi-agent systems. We investigate the security vulnerabilities of a popular multi-agent pattern known as the orchestrator setup, in which a central agent decomposes and delegates tasks to specialized agents. Through red-teaming a concrete setup representative of a likely future use case, we demonstrate a novel attack vector, OMNI-LEAK, that compromises several agents to leak sensitive data through a single indirect prompt injection, even in the \textit{presence of data access control}. We report the susceptibility of frontier models to different categories of attacks, finding that both reasoning and non-reasoning models are vulnerable, even when the attacker lacks insider knowledge of the implementation details. Our work highlights the importance of safety research to generalize from single-agent to multi-agent settings, in order to reduce the serious risks of real-world privacy breaches and financial losses and overall public trust in AI agents.
- Abstract(参考訳): 大規模言語モデル (LLM) エージェントの能力が向上するにつれて, マルチエージェントシステムという形での協調的利用が, 実用的なパラダイムとして出現することが期待されている。
これまでの研究は、エージェントに関連する安全性と誤用リスクを調べてきた。
しかし、これらの多くは、シングルエージェントのケースや、アクセス制御のような基本的なエンジニアリングの保護を欠いている設定に焦点を当てており、マルチエージェントシステムにおける脅威モデリングの不足が明らかになっている。
本稿では,中央エージェントがタスクを特殊エージェントに分解・委譲するオーケストレータ設定として知られる,一般的なマルチエージェントパターンのセキュリティ脆弱性について検討する。
将来的なユースケースの具体的設定をリピートすることで、新たな攻撃ベクトルであるOMNI-LEAKを実証し、複数のエージェントが単一間接的なプロンプトインジェクションを通じて機密データをリークする、たとえ \textit{presence of data access control} であっても、機密データを漏洩させる。
我々は、攻撃者が実装の詳細について内部知識を欠いている場合でも、推論モデルと非推論モデルの両方が脆弱であることが判明し、フロンティアモデルの攻撃に対する感受性を報告した。
われわれの研究は、現実世界のプライバシー侵害や財務的損失の深刻なリスクを低減し、AIエージェントに対する全体的な公的な信頼を減らすために、単一エージェントからマルチエージェント設定へ一般化する安全研究の重要性を強調している。
関連論文リスト
- AgentDoG: A Diagnostic Guardrail Framework for AI Agent Safety and Security [126.49733412191416]
現在のガードレールモデルは、リスク診断におけるエージェント的リスク認識と透明性を欠いている。
エージェントリスクをソース(場所)、障害モード(方法)、結果(何)で分類する統合された3次元分類法を提案する。
AgentDoG(AgentDoG)のための,エージェント安全性ベンチマーク(ATBench)と診断ガードレールフレームワークを新たに導入する。
論文 参考訳(メタデータ) (2026-01-26T13:45:41Z) - Exposing Weak Links in Multi-Agent Systems under Adversarial Prompting [5.544819942438653]
本稿では,マルチエージェントシステムのセキュリティ評価を行うフレームワークであるSafeAgentsを提案する。
広く採用されている5つのマルチエージェントアーキテクチャについて検討する。
この結果から,一般的なデザインパターンには重大な脆弱性があることが判明した。
論文 参考訳(メタデータ) (2025-11-14T04:22:49Z) - Can an Individual Manipulate the Collective Decisions of Multi-Agents? [53.01767232004823]
M-Spoilerは、マルチエージェントシステム内のエージェントインタラクションをシミュレートして、対向サンプルを生成するフレームワークである。
M-スポイラーは、敵対的サンプルの最適化を積極的に支援するスタブボーン剤を導入した。
本研究は,マルチエージェントシステムにおける個々のエージェントの知識によって引き起こされるリスクを検証した。
論文 参考訳(メタデータ) (2025-09-20T01:54:20Z) - BlindGuard: Safeguarding LLM-based Multi-Agent Systems under Unknown Attacks [58.959622170433725]
BlindGuardは、攻撃固有のラベルや悪意のある振る舞いに関する事前の知識を必要とせずに学習する、教師なしの防御方法である。
BlindGuardはマルチエージェントシステムにまたがる多様な攻撃タイプ(即時注入、メモリ中毒、ツール攻撃)を効果的に検出する。
論文 参考訳(メタデータ) (2025-08-11T16:04:47Z) - Towards Unifying Quantitative Security Benchmarking for Multi Agent Systems [0.0]
AIシステムの進化 自律エージェントが協力し、情報を共有し、プロトコルを開発することでタスクを委譲するマルチエージェントアーキテクチャをますます展開する。
そのようなリスクの1つはカスケードリスクである。あるエージェントの侵入はシステムを通してカスケードし、エージェント間の信頼を利用して他人を妥協させる。
ACI攻撃では、あるエージェントに悪意のあるインプットまたはツールエクスプロイトが注入され、そのアウトプットを信頼するエージェント間でカスケードの妥協とダウンストリーム効果が増幅される。
論文 参考訳(メタデータ) (2025-07-23T13:51:28Z) - Who's the Mole? Modeling and Detecting Intention-Hiding Malicious Agents in LLM-Based Multi-Agent Systems [25.6233463223145]
大規模言語モデル(LLM-MAS)を用いたマルチエージェントシステムにおける意図隠蔽脅威について検討する。
高いステルス性を維持しながらタスク完了を微妙に妨害する4つの代表的な攻撃パラダイムを設計する。
これらの脅威に対処するために,心理学に着想を得た検出フレームワークであるAgentXposedを提案する。
論文 参考訳(メタデータ) (2025-07-07T07:34:34Z) - SafeMobile: Chain-level Jailbreak Detection and Automated Evaluation for Multimodal Mobile Agents [58.21223208538351]
本研究は,モバイルマルチモーダルエージェントを取り巻くセキュリティ問題について考察する。
行動シーケンス情報を組み込んだリスク識別機構の構築を試みる。
また、大規模言語モデルに基づく自動アセスメントスキームも設計している。
論文 参考訳(メタデータ) (2025-07-01T15:10:00Z) - Kaleidoscopic Teaming in Multi Agent Simulations [75.47388708240042]
我々は,エージェントが行う複雑な行動,思考プロセス,行動の安全性リスクを評価する上で,既存のレッドチームや安全評価フレームワークは不十分であると主張している。
我々は,新しいコンテキスト内最適化手法を導入し,安全解析のためのより良いシナリオを生成する。
エージェントの安全性を測定するためのフレームワークとともに使用できる適切なメトリクスを提案する。
論文 参考訳(メタデータ) (2025-06-20T23:37:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。