論文の概要: Training-Free Zero-Shot Anomaly Detection in 3D Brain MRI with 2D Foundation Models
- arxiv url: http://arxiv.org/abs/2602.15315v1
- Date: Tue, 17 Feb 2026 02:46:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-18 16:03:17.960557
- Title: Training-Free Zero-Shot Anomaly Detection in 3D Brain MRI with 2D Foundation Models
- Title(参考訳): 2次元基礎モデルを用いた3次元脳MRIにおける無訓練ゼロショット異常検出
- Authors: Tai Le-Gia, Jaehyun Ahn,
- Abstract要約: 3次元脳MRIにおけるZSADのためのフルトレーニングフリーフレームワークについて紹介する。
このフレームワークは, 2次元基礎モデルにより処理された多軸スライスを集約することにより, 局所化ボリュームトークンを構成する。
これらの3Dパッチトークンは、立方体空間コンテキストを復元し、距離ベースでバッチレベルの異常検出パイプラインと直接統合する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Zero-shot anomaly detection (ZSAD) has gained increasing attention in medical imaging as a way to identify abnormalities without task-specific supervision, but most advances remain limited to 2D datasets. Extending ZSAD to 3D medical images has proven challenging, with existing methods relying on slice-wise features and vision-language models, which fail to capture volumetric structure. In this paper, we introduce a fully training-free framework for ZSAD in 3D brain MRI that constructs localized volumetric tokens by aggregating multi-axis slices processed by 2D foundation models. These 3D patch tokens restore cubic spatial context and integrate directly with distance-based, batch-level anomaly detection pipelines. The framework provides compact 3D representations that are practical to compute on standard GPUs and require no fine-tuning, prompts, or supervision. Our results show that training-free, batch-based ZSAD can be effectively extended from 2D encoders to full 3D MRI volumes, offering a simple and robust approach for volumetric anomaly detection.
- Abstract(参考訳): ゼロショット異常検出(ZSAD)は、タスク固有の監督なしに異常を識別する方法として医療画像に注目が集まっているが、ほとんどの進歩は2Dデータセットに限られている。
ZSADを3Dの医用画像に拡張することは、既存の手法では、ボリューム構造をキャプチャできないスライスワイズ機能や視覚言語モデルに依存しているため、難しいことが証明されている。
本稿では,2次元ファンデーションモデルにより処理された多軸スライスを集約することにより,局所化ボリュームトークンを構成する3次元脳MRIにおけるZSADのための完全トレーニングフリーフレームワークを提案する。
これらの3Dパッチトークンは、立方体空間コンテキストを復元し、距離ベースでバッチレベルの異常検出パイプラインと直接統合する。
このフレームワークは、標準的なGPUで計算し、微調整、プロンプト、監督を必要としない、コンパクトな3D表現を提供する。
以上の結果から,2次元エンコーダからフル3次元MRIボリュームへ効果的にZSADを拡張できることが示唆された。
関連論文リスト
- TriCLIP-3D: A Unified Parameter-Efficient Framework for Tri-Modal 3D Visual Grounding based on CLIP [52.79100775328595]
3Dビジュアルグラウンドティングは、人間の指示に基づいて現実世界の3D環境における視覚情報を理解するための具体的エージェントである。
既存の3Dビジュアルグラウンド法は、異なるモダリティの異なるエンコーダに依存している。
本稿では,3つのモードすべてを処理するために,統合された2次元事前学習型マルチモーダルネットワークを提案する。
論文 参考訳(メタデータ) (2025-07-20T10:28:06Z) - Rigid Single-Slice-in-Volume registration via rotation-equivariant 2D/3D feature matching [3.041742847777409]
本研究では,1つの2次元スライスと対応する3次元ボリュームを一致させる自己教師付き2D/3D登録手法を提案する。
NSCLC-Radiomics CTおよびKIRBY21 MRIデータセット上で,提案したスライス・イン・ボリューム登録の堅牢性を示す。
論文 参考訳(メタデータ) (2024-10-24T12:24:27Z) - Repeat and Concatenate: 2D to 3D Image Translation with 3D to 3D Generative Modeling [14.341099905684844]
本稿では,2次元X線と3次元CTライクな再構成が可能な2次元-3次元画像変換法について,簡単な手法で検討する。
我々は,潜伏空間内の複数の2次元ビューにまたがる情報を統合する既存のアプローチが,潜伏符号化中に貴重な信号情報を失うことを観察する。代わりに,2次元ビューを高チャネルの3次元ボリュームに繰り返して,簡単な3次元から3次元生成モデル問題として3次元再構成課題にアプローチする。
この方法では、再構成された3Dボリュームが、2D入力から貴重な情報を保持でき、Swin Uのチャネル状態間で渡される。
論文 参考訳(メタデータ) (2024-06-26T15:18:20Z) - Weakly Supervised Monocular 3D Detection with a Single-View Image [58.57978772009438]
モノクロ3D検出は、単一視点画像からの正確な3Dオブジェクトのローカライゼーションを目的としている。
SKD-WM3Dは弱い教師付き単分子3D検出フレームワークである。
我々は,SKD-WM3Dが最先端技術を超え,多くの完全教師付き手法と同等であることを示した。
論文 参考訳(メタデータ) (2024-02-29T13:26:47Z) - Spatiotemporal Modeling Encounters 3D Medical Image Analysis:
Slice-Shift UNet with Multi-View Fusion [0.0]
本稿では,2次元CNNにおける3次元特徴をエンコードする2次元モデルSlice SHift UNetを提案する。
より正確にマルチビュー機能は、ボリュームの3次元平面に沿って2次元の畳み込みを実行することで協調的に学習される。
提案手法の有効性は,多モード腹部多臓器軸 (AMOS) と Cranial Vault (BTCV) データセットを越えたマルチアトラスラベリング (Multi-Atlas Labeling Beyond the Cranial Vault) で検証した。
論文 参考訳(メタデータ) (2023-07-24T14:53:23Z) - Joint Self-Supervised Image-Volume Representation Learning with
Intra-Inter Contrastive Clustering [31.52291149830299]
自己教師付き学習は、ラベル付きデータから特徴表現を学習することで、ラベル付きトレーニングサンプルの欠如を克服することができる。
現在の医療分野におけるSSL技術のほとんどは、2D画像または3Dボリュームのために設計されている。
本研究では2次元および3次元データモダリティの教師なし共同学習のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-04T18:57:44Z) - Homography Loss for Monocular 3D Object Detection [54.04870007473932]
ホログラフィーロス(Homography Loss)と呼ばれる,2次元情報と3次元情報の両方を利用する識別可能なロス関数を提案する。
提案手法は,KITTI 3Dデータセットにおいて,他の最先端技術と比較して高い性能を示す。
論文 参考訳(メタデータ) (2022-04-02T03:48:03Z) - Weakly Supervised Volumetric Image Segmentation with Deformed Templates [80.04326168716493]
対象対象物の表面にスパースな3次元点のセットのみを提供する必要があるという意味で、真に弱い教師付きアプローチを提案する。
監督コストの削減により、3Dの弱スーパービジョンに対する従来のアプローチよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-06-07T22:09:34Z) - FCOS3D: Fully Convolutional One-Stage Monocular 3D Object Detection [78.00922683083776]
一般的な2D検出器をこの3Dタスクで動作させることは簡単ではない。
本報告では,完全畳み込み型単段検出器を用いた手法を用いてこの問題を考察する。
私たちのソリューションは、NeurIPS 2020のnuScenes 3D検出チャレンジのすべてのビジョンのみの方法の中で1位を獲得します。
論文 参考訳(メタデータ) (2021-04-22T09:35:35Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
大規模3次元データリポジトリから抽出した3次元特徴を有効活用し,RGB画像から抽出した2次元特徴を向上する手法を提案する。
まず,事前学習した3Dネットワークから3D知識を抽出して2Dネットワークを監督し,トレーニング中の2D特徴からシミュレーションされた3D特徴を学習する。
次に,2次元の正規化方式を設計し,2次元特徴と3次元特徴のキャリブレーションを行った。
第3に,非ペアの3dデータを用いたトレーニングのフレームワークを拡張するために,意味を意識した対向的トレーニングモデルを設計した。
論文 参考訳(メタデータ) (2021-04-06T02:22:24Z) - Spatial Context-Aware Self-Attention Model For Multi-Organ Segmentation [18.76436457395804]
マルチ組織セグメンテーションは、医学画像解析におけるディープラーニングの最も成功した応用の1つである。
深部畳み込みニューラルネット(CNN)は,CT画像やMRI画像上で臨床応用画像のセグメンテーション性能を達成する上で非常に有望である。
本研究では,高分解能2次元畳み込みによりセグメンテーションを実現する3次元モデルと2次元モデルを組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2020-12-16T21:39:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。