論文の概要: RaCo: Ranking and Covariance for Practical Learned Keypoints
- arxiv url: http://arxiv.org/abs/2602.15755v1
- Date: Tue, 17 Feb 2026 17:39:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-18 16:03:18.143356
- Title: RaCo: Ranking and Covariance for Practical Learned Keypoints
- Title(参考訳): RaCo: 実践的な学習ポイントのためのランク付けと共分散
- Authors: Abhiram Shenoi, Philipp Lindenberger, Paul-Edouard Sarlin, Marc Pollefeys,
- Abstract要約: RaCoは、様々な3Dコンピュータビジョンタスクに適した堅牢で汎用的なキーポイントを学ぶように設計されている。
RaCoは可視画像ペアを必要とせずに動作する。
- 参考スコア(独自算出の注目度): 51.38393049306958
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces RaCo, a lightweight neural network designed to learn robust and versatile keypoints suitable for a variety of 3D computer vision tasks. The model integrates three key components: the repeatable keypoint detector, a differentiable ranker to maximize matches with a limited number of keypoints, and a covariance estimator to quantify spatial uncertainty in metric scale. Trained on perspective image crops only, RaCo operates without the need for covisible image pairs. It achieves strong rotational robustness through extensive data augmentation, even without the use of computationally expensive equivariant network architectures. The method is evaluated on several challenging datasets, where it demonstrates state-of-the-art performance in keypoint repeatability and two-view matching, particularly under large in-plane rotations. Ultimately, RaCo provides an effective and simple strategy to independently estimate keypoint ranking and metric covariance without additional labels, detecting interpretable and repeatable interest points. The code is available at https://github.com/cvg/RaCo.
- Abstract(参考訳): 本稿では,様々な3次元コンピュータビジョンタスクに適した,堅牢で汎用性の高いキーポイントを学習するための軽量ニューラルネットワークであるRaCoを紹介する。
このモデルには3つの重要な要素が組み込まれている: 繰り返し可能なキーポイント検出器、限られた数のキーポイントとのマッチングを最大化する微分可能なローダ、および計量スケールにおける空間的不確かさを定量化する共分散推定器である。
RaCoは視点画像のみを学習し、可視画像ペアを必要とせずに動作する。
計算コストのかかる同変ネットワークアーキテクチャを使わずとも、広範なデータ拡張によって強い回転ロバスト性を実現する。
この手法はいくつかの挑戦的データセットで評価され、特に大きな面内回転下で、キーポイント再現性と2ビューマッチングにおける最先端の性能を示す。
最終的に、RaCoは、追加ラベルなしでキーポイントランキングとメートル法共分散を独立して推定し、解釈可能かつ繰り返し可能な興味点を検出する、効果的で単純な戦略を提供する。
コードはhttps://github.com/cvg/RaCo.comで公開されている。
関連論文リスト
- Learning Feature Matching via Matchable Keypoint-Assisted Graph Neural
Network [52.29330138835208]
画像のペア間の局所的な特徴の正確なマッチングは、コンピュータビジョンの課題である。
従来の研究では、注意に基づくグラフニューラルネットワーク(GNN)と、画像内のキーポイントに完全に接続されたグラフを使用するのが一般的だった。
本稿では,非繰り返しキーポイントをバイパスし,マッチング可能なキーポイントを利用してメッセージパッシングを誘導する,疎注意に基づくGNNアーキテクチャであるMaKeGNNを提案する。
論文 参考訳(メタデータ) (2023-07-04T02:50:44Z) - Class Anchor Margin Loss for Content-Based Image Retrieval [97.81742911657497]
距離学習パラダイムに該当する新しいレペラ・トラクタ損失を提案するが、ペアを生成する必要がなく、直接L2メトリックに最適化する。
CBIRタスクにおいて,畳み込みアーキテクチャと変圧器アーキテクチャの両方を用いて,少数ショットおよびフルセットトレーニングの文脈で提案した目的を評価する。
論文 参考訳(メタデータ) (2023-06-01T12:53:10Z) - SVNet: Where SO(3) Equivariance Meets Binarization on Point Cloud
Representation [65.4396959244269]
本論文は,3次元学習アーキテクチャを構築するための一般的なフレームワークを設計することによる課題に対処する。
提案手法はPointNetやDGCNNといった一般的なバックボーンに適用できる。
ModelNet40、ShapeNet、および実世界のデータセットであるScanObjectNNの実験では、この手法が効率、回転、精度の間の大きなトレードオフを達成することを示した。
論文 参考訳(メタデータ) (2022-09-13T12:12:19Z) - DECA: Deep viewpoint-Equivariant human pose estimation using Capsule
Autoencoders [3.2826250607043796]
トレーニング時に見つからない視点を扱う場合、現在の3Dヒューマンポース推定法は失敗する傾向にあることを示す。
そこで本研究では,高速変動ベイズカプセルルーティングを用いたカプセルオートエンコーダネットワークDECAを提案する。
実験による検証では,視界・視界・視界・視界・視界・視界の両面から,奥行き画像の他の手法よりも優れていた。
論文 参考訳(メタデータ) (2021-08-19T08:46:15Z) - CoKe: Localized Contrastive Learning for Robust Keypoint Detection [24.167397429511915]
特徴空間における3種類の距離を最適化するためにキーポイントカーネルを選択することができることを示す。
我々は、教師付きコントラスト学習を含むフレームワーク内で、この最適化プロセスを定式化する。
CoKeは、すべてのキーポイントを論理的に共同で表現するアプローチと比較して、最先端の結果を達成する。
論文 参考訳(メタデータ) (2020-09-29T16:00:43Z) - Triangle-Net: Towards Robustness in Point Cloud Learning [0.0]
本稿では, 回転, 位置シフト, スケーリングに対する不変性を同時に実現し, 点間隔に頑健な3次元分類手法を提案する。
提案手法は,ModelNet 40分類タスクにおいて,ポイントネットと3DmFVをそれぞれ35.0%,28.1%で上回っている。
論文 参考訳(メタデータ) (2020-02-27T20:42:32Z) - Towards High Performance Human Keypoint Detection [87.1034745775229]
文脈情報は人体構成や見えないキーポイントを推論する上で重要な役割を担っている。
そこで我々は,空間とチャネルのコンテキスト情報を効率的に統合するカスケードコンテキストミキサー(CCM)を提案する。
CCMの表現能力を最大化するために、我々は、強陰性な人検出マイニング戦略と共同訓練戦略を開発する。
検出精度を向上させるために,キーポイント予測を後処理するためのいくつかのサブピクセル改良手法を提案する。
論文 参考訳(メタデータ) (2020-02-03T02:24:51Z) - CAE-LO: LiDAR Odometry Leveraging Fully Unsupervised Convolutional
Auto-Encoder for Interest Point Detection and Feature Description [10.73965992177754]
2D CAEを用いた球面リングデータから利得点を検出し、3D CAEを用いたマルチレゾリューションボクセルモデルから特徴点を抽出する、完全に教師なしコナールオートエンコーダベースのLiDARオドメトリー(CAE-LO)を提案する。
1)KITTIデータセットに基づく実験により、未構造化シナリオにおける一致の成功率を改善するために、より局所的な詳細を抽出できることが示され、我々の特徴は、マッチング不整合比で50%以上、最先端の成果を上げている。
論文 参考訳(メタデータ) (2020-01-06T01:26:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。