論文の概要: Heuristic Search as Language-Guided Program Optimization
- arxiv url: http://arxiv.org/abs/2602.16038v1
- Date: Tue, 17 Feb 2026 21:45:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-19 15:58:30.447069
- Title: Heuristic Search as Language-Guided Program Optimization
- Title(参考訳): 言語誘導型プログラム最適化としてのヒューリスティック検索
- Authors: Mingxin Yu, Ruixiao Yang, Chuchu Fan,
- Abstract要約: 大規模言語モデル(LLM)は最適化(CO)においてAHD(Automated Heuristic Design)を進化させた
LLM駆動型AHDのための構造化フレームワークを提案し、発見プロセスをモジュールステージに明示的に分解する。
当社のフレームワークは4つの現実世界のCOドメインにまたがって検証しています。
- 参考スコア(独自算出の注目度): 17.390448172399374
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have advanced Automated Heuristic Design (AHD) in combinatorial optimization (CO) in the past few years. However, existing discovery pipelines often require extensive manual trial-and-error or reliance on domain expertise to adapt to new or complex problems. This stems from tightly coupled internal mechanisms that limit systematic improvement of the LLM-driven design process. To address this challenge, we propose a structured framework for LLM-driven AHD that explicitly decomposes the heuristic discovery process into modular stages: a forward pass for evaluation, a backward pass for analytical feedback, and an update step for program refinement. This separation provides a clear abstraction for iterative refinement and enables principled improvements of individual components. We validate our framework across four diverse real-world CO domains, where it consistently outperforms baselines, achieving up to $0.17$ improvement in QYI on unseen test sets. Finally, we show that several popular AHD methods are restricted instantiations of our framework. By integrating them in our structured pipeline, we can upgrade the components modularly and significantly improve their performance.
- Abstract(参考訳): LLM(Large Language Models)は、ここ数年、組合せ最適化(CO)においてAHD(Automated Heuristic Design)を進歩させてきた。
しかし、既存の発見パイプラインは、新しい問題や複雑な問題に適応するために、広範囲な手動の試行錯誤やドメインの専門知識への依存を必要とすることが多い。
これは、LLM駆動設計プロセスの体系的な改善を制限する、密結合された内部メカニズムに由来する。
この課題に対処するため,LLM駆動型AHDのための構造化フレームワークを提案し,ヒューリスティックな発見プロセスをモジュールステージに明示的に分解する。
この分離は反復的な改善のための明確な抽象化を提供し、個々のコンポーネントの原則的な改善を可能にします。
当社のフレームワークは4つの現実世界のCOドメインにまたがって検証されており、ベースラインを一貫して上回り、目に見えないテストセット上で最大0.17ドルのQYI改善を実現しています。
最後に,一般的なAHD手法がフレームワークのインスタンス化に制限されていることを示す。
構造化パイプラインに統合することで、コンポーネントをモジュール的にアップグレードし、パフォーマンスを大幅に改善できます。
関連論文リスト
- AR-MOT: Autoregressive Multi-object Tracking [56.09738000988466]
本稿では,大規模言語モデル(LLM)フレームワーク内のシーケンス生成タスクとしてMOTを定式化する,新しい自己回帰パラダイムを提案する。
この設計により、タスク固有のヘッドを必要とせずに、フレキシブルなシーケンス構成によって構造化された結果を出力できる。
地域レベルの視覚知覚を高めるために,事前訓練された検出器に基づくオブジェクト・トケナイザを導入する。
論文 参考訳(メタデータ) (2026-01-05T09:17:28Z) - QiMeng-NeuComBack: Self-Evolving Translation from IR to Assembly Code [52.66657751895655]
大規模言語モデル(LLM)は、ニューラルコンパイルという魅力的な新しいパラダイムを提供する。
本稿では,IR-to-assemblyコンパイル用に設計された新しいベンチマークデータセットであるNeuComBackを紹介する。
LLMの内部的なプロンプト戦略を進化させる自己進化的プロンプト最適化法を提案する。
論文 参考訳(メタデータ) (2025-11-03T03:20:26Z) - EasySteer: A Unified Framework for High-Performance and Extensible LLM Steering [55.56674028743782]
大規模言語モデル(LLM)のステアリングは、推論時にモデル動作を制御するための有望なパラダイムとして登場した。
我々は,vLLM上に構築された高性能LLMステアリングのための統合フレームワークであるEasySteerを提案する。
論文 参考訳(メタデータ) (2025-09-29T17:59:07Z) - LLM4CMO: Large Language Model-aided Algorithm Design for Constrained Multiobjective Optimization [54.35609820607923]
大規模言語モデル(LLM)は、アルゴリズム設計を支援する新しい機会を提供する。
LLM4CMOは,2つの人口構成をもつ2段階のフレームワークをベースとした新しいCMOEAである。
LLMは複雑な進化最適化アルゴリズムの開発において効率的な共同設計者として機能する。
論文 参考訳(メタデータ) (2025-08-16T02:00:57Z) - CALM: Co-evolution of Algorithms and Language Model for Automatic Heuristic Design [11.639825726501659]
大規模言語モデル(LLM)は、従来のコストのごく一部で自律的にハイパフォーマンスを発見できる。
本稿では,言語指導と数値指導を組み合わせたハイブリッドフレームワークを提案する。
本手法は,様々な最適化タスクにおいて,SOTA(State-of-the-art)ベースラインを上回っている。
論文 参考訳(メタデータ) (2025-05-18T07:48:47Z) - IMPROVE: Iterative Model Pipeline Refinement and Optimization Leveraging LLM Experts [28.9807389592324]
機械学習のワークフローを自動化するための有望なソリューションとして、大規模言語モデル(LLM)エージェントが登場した。
LLM駆動のMLパイプライン設計のための新しい戦略であるIterative Refinementを紹介します。
実際のトレーニングフィードバックに基づいて個々のコンポーネントを体系的に更新することにより、イテレーティブリファインメントはモデル全体のパフォーマンスを改善する。
論文 参考訳(メタデータ) (2025-02-25T01:52:37Z) - Large Language Model Agent as a Mechanical Designer [7.136205674624813]
本研究では、FEMモジュールと協調して事前訓練された大規模言語モデル(LLM)を利用して、構造設計を自律的に生成、評価、洗練するフレームワークを提案する。
LLMはドメイン固有の微調整なしで動作し、設計候補を提案し、FEMから派生した性能指標を解釈し、構造的な音響修正を適用する。
NSGA-II (Non-Sorting Genetic Algorithm II) と比較して,本手法はより高速に収束し,より少ないFEM評価を実現する。
論文 参考訳(メタデータ) (2024-04-26T16:41:24Z) - Large Language Models to Enhance Bayesian Optimization [57.474613739645605]
本稿では,大規模言語モデル(LLM)の能力をベイズ最適化に組み込む新しいアプローチであるLLAMBOを提案する。
高いレベルでは、自然言語のBO問題を枠組み化し、LLMが歴史的評価に照らした有望な解を反復的に提案し、評価することを可能にする。
以上の結果から,LLAMBOはゼロショットウォームスタートに有効であり,サロゲートモデリングや候補サンプリングの促進,特に観察が不十分な場合の探索の初期段階において有効であることが示唆された。
論文 参考訳(メタデータ) (2024-02-06T11:44:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。