論文の概要: AdaptOrch: Task-Adaptive Multi-Agent Orchestration in the Era of LLM Performance Convergence
- arxiv url: http://arxiv.org/abs/2602.16873v1
- Date: Wed, 18 Feb 2026 21:00:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-20 15:21:28.403173
- Title: AdaptOrch: Task-Adaptive Multi-Agent Orchestration in the Era of LLM Performance Convergence
- Title(参考訳): AdaptOrch: LLM性能収束時代のタスク適応型マルチエージェントオーケストレーション
- Authors: Geunbin Yu,
- Abstract要約: AdaptOrchはタスク適応型マルチエージェントオーケストレーションのための正式なフレームワークである。
トポロジ対応オーケストレーションは、静的シングルトポロジベースラインよりも12~23%改善されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As large language models from diverse providers converge toward comparable benchmark performance, the traditional paradigm of selecting a single best model per task yields diminishing returns. We argue that orchestration topology -- the structural composition of how multiple agents are coordinated, parallelized, and synthesized -- now dominates system-level performance over individual model capability. We present AdaptOrch, a formal framework for task-adaptive multi-agent orchestration that dynamically selects among four canonical topologies (parallel, sequential, hierarchical, and hybrid) based on task dependency graphs and empirically derived domain characteristics. Our framework introduces three key contributions: (1) a Performance Convergence Scaling Law, formalizing conditions under which orchestration selection outweighs model selection; (2) a Topology Routing Algorithm that maps task decomposition DAGs to optimal orchestration patterns in O(|V| + |E|) time; and (3) an Adaptive Synthesis Protocol with provable termination guarantees and heuristic consistency scoring for parallel agent outputs. We validate AdaptOrch across coding (SWE-bench), reasoning (GPQA), and retrieval-augmented generation tasks, demonstrating that topology-aware orchestration achieves 12-23% improvement over static single-topology baselines, even when using identical underlying models. Our results establish orchestration design as a first-class optimization target independent of model scaling.
- Abstract(参考訳): 多様なプロバイダによる大規模な言語モデルは、同等のベンチマークパフォーマンスに収束するので、タスクごとにひとつの最高のモデルを選択するという伝統的なパラダイムは、リターンを減少させます。
オーケストレーショントポロジ — 複数のエージェントのコーディネート、並列化、合成といった構造構成 — が、個々のモデル能力よりもシステムレベルのパフォーマンスを支配している、と私たちは主張しています。
本稿では、タスク依存グラフと経験的に派生したドメイン特性に基づいて、4つの標準トポロジ(並列、シーケンシャル、階層、ハイブリッド)を動的に選択するタスク適応型マルチエージェントオーケストレーションの形式的フレームワークであるAdaptOrchを提案する。
提案フレームワークは,(1)オーケストレーション選択がモデル選択を上回る条件を定式化したパフォーマンス収束スケーリング法,(2)タスク分解DAGをO(|V| + |E|)時間で最適なオーケストレーションパターンにマッピングするトポロジールーティングアルゴリズム,(3)証明可能な終了保証付き適応合成プロトコル,および並列エージェント出力に対するヒューリスティック一貫性の整合性を示す。
同一の基盤モデルを用いても、トポロジ対応のオーケストレーションが静的な単一トポロジベースラインよりも12~23%改善できることを実証し、符号化(SWE-bench)、推論(GPQA)、検索拡張生成タスクを検証した。
本結果は,モデルスケーリングとは無関係に,一級最適化ターゲットとしてオーケストレーション設計を確立した。
関連論文リスト
- OFA-MAS: One-for-All Multi-Agent System Topology Design based on Mixture-of-Experts Graph Generative Models [57.94189874119267]
マルチエージェントシステム(MAS)は複雑な問題を解決するための強力なパラダイムを提供する。
現在のグラフ学習に基づく設計手法は、しばしば「1対1」のパラダイムに準拠している。
自然言語で記述されたタスクに対して適応的な協調グラフを生成する一対一のフレームワークOFA-TADを提案する。
論文 参考訳(メタデータ) (2026-01-19T12:23:44Z) - CSMCIR: CoT-Enhanced Symmetric Alignment with Memory Bank for Composed Image Retrieval [54.15776146365823]
Composed Image Retrieval (CIR)では、ユーザーは参照画像と操作テキストの両方を使用してターゲットイメージを検索できる。
CSMCIRは3つの相乗的コンポーネントを通して効率的なクエリターゲットアライメントを実現する統一表現フレームワークである。
論文 参考訳(メタデータ) (2026-01-07T09:21:38Z) - Dynamic Generation of Multi-LLM Agents Communication Topologies with Graph Diffusion Models [99.85131798240808]
我々はtextitGuided Topology Diffusion (GTD) と呼ばれる新しい生成フレームワークを導入する。
条件付き離散グラフ拡散モデルにインスパイアされたGTD式は、反復的な構成過程としてトポロジー合成を行う。
各ステップで生成は、多目的報酬を予測する軽量プロキシモデルによって制御される。
実験により、GTDは高いタスク適応性、スパース、効率的な通信トポロジを生成できることが示されている。
論文 参考訳(メタデータ) (2025-10-09T05:28:28Z) - HEAS: Hierarchical Evolutionary Agent Simulation Framework for Cross-Scale Modeling and Multi-Objective Search [4.807104001943257]
階層シミュレーションエージェント(Hierarchical Simulation Agent, HEAS)は、階層化されたエージェントベースのモデリングを進化的最適化とトーナメント評価で統合するPythonフレームワークである。
HEASは、共有コンテキストを読み書きする決定論的レイヤにスケジュールされた軽量プロセス(ストリーム)の階層としてモデルを表現する。
compact APIとCLIは、シングルオブジェクトとマルチオブジェクトの進化をシミュレートし、最適化し、評価します。
論文 参考訳(メタデータ) (2025-08-21T13:35:46Z) - Assemble Your Crew: Automatic Multi-agent Communication Topology Design via Autoregressive Graph Generation [91.17994756436259]
大規模言語モデル(LLM)に基づくマルチエージェントシステム(MAS)は、多様な領域にわたる複雑な問題を扱うための強力なソリューションとして登場した。
既存のアプローチは、事前に定義されたエージェントセットとハードコードされた相互作用構造を持つテンプレートグラフ修正パラダイムに依存しているため、基本的に制限されている。
協調グラフをスクラッチから構築することで、このパラダイムを運用する新しい自己回帰モデルであるARG-Designerを提案する。
論文 参考訳(メタデータ) (2025-07-24T09:17:41Z) - Comparative Analysis of AI Agent Architectures for Entity Relationship Classification [1.6887793771613606]
本研究では,3つの異なるAIエージェントアーキテクチャの比較分析を行い,関係分類を行う。
エージェントアーキテクチャは,(1)反射的自己評価,(2)階層的タスク分解,(3)新しいマルチエージェント動的サンプル生成機構を含む。
実験により,マルチエージェントの協調が標準のショットプロンプトより一貫して優れていることが実証された。
論文 参考訳(メタデータ) (2025-06-03T04:19:47Z) - SpecRouter: Adaptive Routing for Multi-Level Speculative Decoding in Large Language Models [21.933379266533098]
大規模言語モデル(LLM)は、推論品質と計算コストの間に重要なトレードオフをもたらす。
既存のサービス戦略では、固定されたモデルスケールや静的な2段階の投機的デコードを用いることが多い。
本稿では,LLM推論を適応的ルーティング問題として再定義する新しいフレームワークであるsystemnameを紹介する。
論文 参考訳(メタデータ) (2025-05-12T15:46:28Z) - Intelligent Orchestration of Distributed Large Foundation Model Inference at the Edge [46.1232919707345]
Large Foundation Models (LFMs)は、次世代のEdge AIアプリケーションの新機能をアンロックすることを約束する。
現在の分割推論戦略では、ノード間でLPM層を分割するが、変動するワークロードに適応するようには設計されていない。
本稿では, LFM層を実行時可変変数に配置し, 分割する, 適応型分割推論オーケストレーションフレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-19T15:35:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。