Relative Error Bound Analysis for Nuclear Norm Regularized Matrix Completion
- URL: http://arxiv.org/abs/1504.06817v2
- Date: Wed, 29 May 2024 02:39:59 GMT
- Title: Relative Error Bound Analysis for Nuclear Norm Regularized Matrix Completion
- Authors: Lijun Zhang, Tianbao Yang, Rong Jin, Zhi-Hua Zhou,
- Abstract summary: We develop a relative error bound for nuclear norm regularized matrix completion.
We derive a relative upper bound for recovering the best low-rank approximation of the unknown matrix.
- Score: 101.83262280224729
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we develop a relative error bound for nuclear norm regularized matrix completion, with the focus on the completion of full-rank matrices. Under the assumption that the top eigenspaces of the target matrix are incoherent, we derive a relative upper bound for recovering the best low-rank approximation of the unknown matrix. Although multiple works have been devoted to analyzing the recovery error of full-rank matrix completion, their error bounds are usually additive, making it impossible to obtain the perfect recovery case and more generally difficult to leverage the skewed distribution of eigenvalues. Our analysis is built upon the optimality condition of the regularized formulation and existing guarantees for low-rank matrix completion. To the best of our knowledge, this is the first relative bound that has been proved for the regularized formulation of matrix completion.
Related papers
- Guarantees of a Preconditioned Subgradient Algorithm for Overparameterized Asymmetric Low-rank Matrix Recovery [8.722715843502321]
We focus on a matrix factorization-based approach for robust low-rank and asymmetric matrix recovery from corrupted measurements.
We propose a subgradient algorithm that inherits the merits of preconditioned algorithms, whose rate of convergence does not depend on the condition number of the sought matrix.
arXiv Detail & Related papers (2024-10-22T08:58:44Z) - Entrywise error bounds for low-rank approximations of kernel matrices [55.524284152242096]
We derive entrywise error bounds for low-rank approximations of kernel matrices obtained using the truncated eigen-decomposition.
A key technical innovation is a delocalisation result for the eigenvectors of the kernel matrix corresponding to small eigenvalues.
We validate our theory with an empirical study of a collection of synthetic and real-world datasets.
arXiv Detail & Related papers (2024-05-23T12:26:25Z) - The Inductive Bias of Flatness Regularization for Deep Matrix
Factorization [58.851514333119255]
This work takes the first step toward understanding the inductive bias of the minimum trace of the Hessian solutions in deep linear networks.
We show that for all depth greater than one, with the standard Isometry Property (RIP) on the measurements, minimizing the trace of Hessian is approximately equivalent to minimizing the Schatten 1-norm of the corresponding end-to-end matrix parameters.
arXiv Detail & Related papers (2023-06-22T23:14:57Z) - Optimal Low-Rank Matrix Completion: Semidefinite Relaxations and
Eigenvector Disjunctions [6.537257913467247]
Low-rank matrix completion consists of a matrix of minimal complexity that recovers a given set of observations as accurately as possible.
New convex relaxations decrease the optimal by magnitude compared to existing methods.
arXiv Detail & Related papers (2023-05-20T22:04:34Z) - Implicit Regularization in Matrix Sensing via Mirror Descent [29.206451882562867]
We study discrete-time mirror descent applied to the unregularized empirical risk in matrix sensing.
We show that gradient descent with full-rank factorized parametrization is a first-order approximation to mirror descent.
arXiv Detail & Related papers (2021-05-28T13:46:47Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
This paper shows that graph spectral embedding using the random walk Laplacian produces vector representations which are completely corrected for node degree.
In the special case of a degree-corrected block model, the embedding concentrates about K distinct points, representing communities.
arXiv Detail & Related papers (2021-05-03T16:36:27Z) - Adversarial Robust Low Rank Matrix Estimation: Compressed Sensing and Matrix Completion [2.0257616108612373]
We deal with matrix compressed sensing, including lasso as a partial problem, and matrix completion.
We propose a simple unified approach based on a combination of the Huber loss function and the nuclear norm penalization.
arXiv Detail & Related papers (2020-10-25T02:32:07Z) - Robust Low-rank Matrix Completion via an Alternating Manifold Proximal
Gradient Continuation Method [47.80060761046752]
Robust low-rank matrix completion (RMC) has been studied extensively for computer vision, signal processing and machine learning applications.
This problem aims to decompose a partially observed matrix into the superposition of a low-rank matrix and a sparse matrix, where the sparse matrix captures the grossly corrupted entries of the matrix.
A widely used approach to tackle RMC is to consider a convex formulation, which minimizes the nuclear norm of the low-rank matrix (to promote low-rankness) and the l1 norm of the sparse matrix (to promote sparsity).
In this paper, motivated by some recent works on low-
arXiv Detail & Related papers (2020-08-18T04:46:22Z) - A Scalable, Adaptive and Sound Nonconvex Regularizer for Low-rank Matrix
Completion [60.52730146391456]
We propose a new non scalable low-rank regularizer called "nuclear Frobenius norm" regularizer, which is adaptive and sound.
It bypasses the computation of singular values and allows fast optimization by algorithms.
It obtains state-of-the-art recovery performance while being the fastest in existing matrix learning methods.
arXiv Detail & Related papers (2020-08-14T18:47:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.