Implicit Regularization in Matrix Sensing via Mirror Descent
- URL: http://arxiv.org/abs/2105.13831v1
- Date: Fri, 28 May 2021 13:46:47 GMT
- Title: Implicit Regularization in Matrix Sensing via Mirror Descent
- Authors: Fan Wu and Patrick Rebeschini
- Abstract summary: We study discrete-time mirror descent applied to the unregularized empirical risk in matrix sensing.
We show that gradient descent with full-rank factorized parametrization is a first-order approximation to mirror descent.
- Score: 29.206451882562867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study discrete-time mirror descent applied to the unregularized empirical
risk in matrix sensing. In both the general case of rectangular matrices and
the particular case of positive semidefinite matrices, a simple potential-based
analysis in terms of the Bregman divergence allows us to establish convergence
of mirror descent -- with different choices of the mirror maps -- to a matrix
that, among all global minimizers of the empirical risk, minimizes a quantity
explicitly related to the nuclear norm, the Frobenius norm, and the von Neumann
entropy. In both cases, this characterization implies that mirror descent, a
first-order algorithm minimizing the unregularized empirical risk, recovers
low-rank matrices under the same set of assumptions that are sufficient to
guarantee recovery for nuclear-norm minimization. When the sensing matrices are
symmetric and commute, we show that gradient descent with full-rank factorized
parametrization is a first-order approximation to mirror descent, in which case
we obtain an explicit characterization of the implicit bias of gradient flow as
a by-product.
Related papers
- Guarantees of a Preconditioned Subgradient Algorithm for Overparameterized Asymmetric Low-rank Matrix Recovery [8.722715843502321]
We focus on a matrix factorization-based approach for robust low-rank and asymmetric matrix recovery from corrupted measurements.
We propose a subgradient algorithm that inherits the merits of preconditioned algorithms, whose rate of convergence does not depend on the condition number of the sought matrix.
arXiv Detail & Related papers (2024-10-22T08:58:44Z) - Entrywise error bounds for low-rank approximations of kernel matrices [55.524284152242096]
We derive entrywise error bounds for low-rank approximations of kernel matrices obtained using the truncated eigen-decomposition.
A key technical innovation is a delocalisation result for the eigenvectors of the kernel matrix corresponding to small eigenvalues.
We validate our theory with an empirical study of a collection of synthetic and real-world datasets.
arXiv Detail & Related papers (2024-05-23T12:26:25Z) - Intrinsic Bayesian Cramér-Rao Bound with an Application to Covariance Matrix Estimation [49.67011673289242]
This paper presents a new performance bound for estimation problems where the parameter to estimate lies in a smooth manifold.
It induces a geometry for the parameter manifold, as well as an intrinsic notion of the estimation error measure.
arXiv Detail & Related papers (2023-11-08T15:17:13Z) - The Inductive Bias of Flatness Regularization for Deep Matrix
Factorization [58.851514333119255]
This work takes the first step toward understanding the inductive bias of the minimum trace of the Hessian solutions in deep linear networks.
We show that for all depth greater than one, with the standard Isometry Property (RIP) on the measurements, minimizing the trace of Hessian is approximately equivalent to minimizing the Schatten 1-norm of the corresponding end-to-end matrix parameters.
arXiv Detail & Related papers (2023-06-22T23:14:57Z) - Beyond Procrustes: Balancing-Free Gradient Descent for Asymmetric
Low-Rank Matrix Sensing [36.96922859748537]
Low-rank matrix estimation plays a central role in various applications across science and engineering.
Existing approaches rely on adding a metric regularization term to balance the scale of the two matrix factors.
In this paper, we provide a theoretical justification for the performance in recovering a low-rank matrix from a small number of linear measurements.
arXiv Detail & Related papers (2021-01-13T15:03:52Z) - A Continuous-Time Mirror Descent Approach to Sparse Phase Retrieval [24.17778927729799]
We analyze continuous-time mirror applied to sparse phase retrieval.
It is the problem of recovering sparse signals from a set of only measurements.
We provide a convergence analysis algorithm for this problem.
arXiv Detail & Related papers (2020-10-20T10:03:44Z) - Robust Low-rank Matrix Completion via an Alternating Manifold Proximal
Gradient Continuation Method [47.80060761046752]
Robust low-rank matrix completion (RMC) has been studied extensively for computer vision, signal processing and machine learning applications.
This problem aims to decompose a partially observed matrix into the superposition of a low-rank matrix and a sparse matrix, where the sparse matrix captures the grossly corrupted entries of the matrix.
A widely used approach to tackle RMC is to consider a convex formulation, which minimizes the nuclear norm of the low-rank matrix (to promote low-rankness) and the l1 norm of the sparse matrix (to promote sparsity).
In this paper, motivated by some recent works on low-
arXiv Detail & Related papers (2020-08-18T04:46:22Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - The Statistical Complexity of Early-Stopped Mirror Descent [27.393821783237186]
We study the statistical guarantees on the excess risk achieved by early-stopped unconstrained mirror descent algorithms.
By completing an inequality that characterizes convexity for the squared loss, we identify an intrinsic link between offset Rademacher complexities and potential-based convergence analysis of mirror descent methods.
arXiv Detail & Related papers (2020-02-01T11:05:08Z) - Relative Error Bound Analysis for Nuclear Norm Regularized Matrix Completion [101.83262280224729]
We develop a relative error bound for nuclear norm regularized matrix completion.
We derive a relative upper bound for recovering the best low-rank approximation of the unknown matrix.
arXiv Detail & Related papers (2015-04-26T13:12:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.