Cusps in the quench dynamics of a Bloch state
- URL: http://arxiv.org/abs/1601.03569v5
- Date: Mon, 24 Jun 2024 07:45:09 GMT
- Title: Cusps in the quench dynamics of a Bloch state
- Authors: J. M. Zhang, Hua-Tong Yang,
- Abstract summary: After a sudden change of the potential of an arbitrary site, quantities like the survival probability of the particle in the initial Bloch state show cusps periodically.
This phenomenon is a emphnonperturbative counterpart of the nonsmooth dynamics observed previously.
Underlying the cusps is an exactly solvable model, which consists of equally spaced levels extending from $-infty$ to $+infty $.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We report some nonsmooth dynamics of a Bloch state in a one-dimensional tight binding model with the periodic boundary condition. After a sudden change of the potential of an arbitrary site, quantities like the survival probability of the particle in the initial Bloch state show cusps periodically, with the period being the Heisenberg time associated with the energy spectrum. This phenomenon is a \emph{nonperturbative} counterpart of the nonsmooth dynamics observed previously (Zhang and Haque, arXiv:1404.4280) in a periodically driven tight binding model. Underlying the cusps is an exactly solvable model, which consists of equally spaced levels extending from $-\infty$ to $+\infty $, between which two arbitrary levels are coupled to each other by the same strength.
Related papers
- Bloch Oscillation and Landau-Zener Tunneling of a Periodically Kicked Dirac Particle [8.098742147831379]
We investigate the dynamics of a relativistic spin-$frac12$ particle governed by a one-dimensional time-periodic kicking Dirac equation.
We observe distinct oscillatory behavior in the momentum space and quantum tunneling in the vicinity of zero momentum.
arXiv Detail & Related papers (2024-11-17T03:42:18Z) - Bloch-Landau-Zener oscillations in a quasi-periodic potential [0.0]
Bloch oscillations and Landau-Zener tunneling are ubiquitous phenomena which are sustained by a band-gap spectrum of a periodic Hamiltonian.
Here we consider the dynamics of noninteracting atoms and Bose-Einstein condensates in a quasi-periodic one-dimensional optical lattice subjected to a weak linear force.
arXiv Detail & Related papers (2024-03-31T10:58:59Z) - Periodic jumps in binary lattices with a static force [0.0]
We investigate the dynamics of a particle in a binary lattice with staggered on-site energies.
An additional static force is introduced which further adjusts the on-site energies.
The binary lattice appears to be unrelated to the semiclassical Rabi model, which describes a periodically driven two-level system.
arXiv Detail & Related papers (2023-10-27T03:28:49Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - Role of boundary conditions in the full counting statistics of
topological defects after crossing a continuous phase transition [62.997667081978825]
We analyze the role of boundary conditions in the statistics of topological defects.
We show that for fast and moderate quenches, the cumulants of the kink number distribution present a universal scaling with the quench rate.
arXiv Detail & Related papers (2022-07-08T09:55:05Z) - Fragility to quantum fluctuations of classical Hamiltonian period
doubling [0.0]
We add quantum fluctuations to a classical period-doubling Hamiltonian time crystal, replacing the $N$ classical interacting angular momenta with quantum spins of size $l$.
The full permutation symmetry of the Hamiltonian allows a mapping to a bosonic model and the application of exact diagonalization for quite large system size.
arXiv Detail & Related papers (2021-08-25T18:02:57Z) - Long-lived period-doubled edge modes of interacting and disorder-free
Floquet spin chains [68.8204255655161]
We show that even in the absence of disorder, and in the presence of bulk heating, $pi$ edge modes are long lived.
A tunneling estimate for the lifetime is obtained by mapping the stroboscopic time-evolution to dynamics of a single particle in Krylov subspace.
arXiv Detail & Related papers (2021-05-28T12:13:14Z) - Dynamics of the vacuum state in a periodically driven Rydberg chain [0.0]
We study the dynamics of the periodically driven Rydberg chain starting from the state with zero Rydberg excitations.
We show that the Floquet Hamiltonian of the system, within a range of drive frequencies, hosts a set of quantum scars.
arXiv Detail & Related papers (2020-05-15T18:00:03Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.