Scar-induced imbalance in staggered Rydberg ladders
- URL: http://arxiv.org/abs/2411.02500v1
- Date: Mon, 04 Nov 2024 19:00:02 GMT
- Title: Scar-induced imbalance in staggered Rydberg ladders
- Authors: Mainak Pal, Madhumita Sarkar, K. Sengupta, Arnab Sen,
- Abstract summary: We show that the kinematically-constrained model of Rydberg atoms on a two-leg ladder with staggered detuning has quantum many-body scars (QMBS) in its spectrum.
QMBS result in coherent many-body revivals and site-dependent magnetization dynamics for both N'eel and Rydberg vacuum initial states around $Delta=1$.
- Score: 0.0
- License:
- Abstract: We demonstrate that the kinematically-constrained model of Rydberg atoms on a two-leg ladder with staggered detuning, $\Delta \in [0,1]$, has quantum many-body scars (QMBS) in its spectrum and represents a non-perturbative generalization of the paradigmatic PXP model defined on a chain. We show that these QMBS result in coherent many-body revivals and site-dependent magnetization dynamics for both N\'eel and Rydberg vacuum initial states around $\Delta=1$. The latter feature leads to eigenstate thermalization hypothesis (ETH)-violating finite imbalance at long times in a disorder free system. This is further demonstrated by constructing appropriate local imbalance operators that display finite long-time averages for N\'eel and vacuum initial states. We also study the fidelity and Shannon entropy for such dynamics which, along with the presence of long-time finite imbalance, brings out the qualitatively different nature of QMBS in PXP ladders with $\Delta \sim 1$ from those in the PXP chain.
Related papers
- Exactly solvable models for fermionic symmetry-enriched topological phases and fermionic 't Hooft anomaly [33.49184078479579]
The interplay between symmetry and topological properties plays a very important role in modern physics.
How to realize all these fermionic SET (fSET) phases in lattice models remains to be a difficult open problem.
arXiv Detail & Related papers (2024-10-24T19:52:27Z) - Exact dynamics of quantum dissipative $XX$ models: Wannier-Stark localization in the fragmented operator space [49.1574468325115]
We find an exceptional point at a critical dissipation strength that separates oscillating and non-oscillating decay.
We also describe a different type of dissipation that leads to a single decay mode in the whole operator subspace.
arXiv Detail & Related papers (2024-05-27T16:11:39Z) - Entanglement dynamics in the many-body Hatano-Nelson model [0.0]
The entanglement dynamics in a non-Hermitian quantum system is studied numerically and analyzed from the viewpoint of quasiparticle picture.
As opposed to an assertion of previous studies, the entanglement dynamics in this non-Hermitian quantum system is very different from the one in its Hermitian counterpart.
arXiv Detail & Related papers (2023-08-06T10:12:41Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Distorted stability pattern and chaotic features for quantized
prey-predator-like dynamics [0.0]
Non-equilibrium and instability features of prey-predator-like systems are investigated in the framework of the Weyl-Wigner quantum mechanics.
From the non-Liouvillian pattern driven by the associated Wigner currents, hyperbolic equilibrium and stability parameters are shown to be affected by quantum distortions.
arXiv Detail & Related papers (2023-03-16T19:55:36Z) - New insights on the quantum-classical division in light of Collapse
Models [63.942632088208505]
We argue that the division between quantum and classical behaviors is analogous to the division of thermodynamic phases.
A specific relationship between the collapse parameter $(lambda)$ and the collapse length scale ($r_C$) plays the role of the coexistence curve in usual thermodynamic phase diagrams.
arXiv Detail & Related papers (2022-10-19T14:51:21Z) - Weak Ergodicity Breaking in the Schwinger Model [0.0]
We study QMBS in spin-$S$ $mathrmU(1)$ quantum link models with staggered fermions.
We find that QMBS persist at $S>1/2$, with the resonant scarring regime, which occurs for a zero-mass quench.
Our results conclusively show that QMBS exist in a wide class of lattice gauge theories in one spatial dimension.
arXiv Detail & Related papers (2022-03-16T18:00:01Z) - Entropy decay for Davies semigroups of a one dimensional quantum lattice [13.349045680843885]
We show that the relative entropy between any evolved state and the equilibrium Gibbs state contracts exponentially fast with an exponent that scales logarithmically with the length of the chain.
This has wide-ranging applications to the study of many-body in and out-of-equilibrium quantum systems.
arXiv Detail & Related papers (2021-12-01T16:15:58Z) - Emergent symmetries and slow quantum dynamics in a Rydberg-atom chain
with confinement [0.0]
Rydberg atoms in optical tweezer arrays provide a playground for nonequilibrium quantum many-body physics.
The PXP model describes the dynamics of such systems in the strongly interacting Rydberg blockade regime.
We show that the interplay between these emergent symmetries and the Rydberg blockade constraint dramatically slows down the system's dynamics beyond naive expectations.
arXiv Detail & Related papers (2021-03-17T17:01:37Z) - Qubit regularization of asymptotic freedom [35.37983668316551]
Heisenberg-comb acts on a Hilbert space with only two qubits per spatial lattice site.
We show that the model reproduces the universal step-scaling function of the traditional model up to correlation lengths of 200,000 in lattice units.
We argue that near-term quantum computers may suffice to demonstrate freedom.
arXiv Detail & Related papers (2020-12-03T18:41:07Z) - Dynamics of the vacuum state in a periodically driven Rydberg chain [0.0]
We study the dynamics of the periodically driven Rydberg chain starting from the state with zero Rydberg excitations.
We show that the Floquet Hamiltonian of the system, within a range of drive frequencies, hosts a set of quantum scars.
arXiv Detail & Related papers (2020-05-15T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.