論文の概要: The CMA Evolution Strategy: A Tutorial
- arxiv url: http://arxiv.org/abs/1604.00772v2
- Date: Fri, 10 Mar 2023 09:45:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-25 04:58:20.258102
- Title: The CMA Evolution Strategy: A Tutorial
- Title(参考訳): CMAの進化戦略 - チュートリアル
- Authors: Nikolaus Hansen (TAO)
- Abstract要約: このチュートリアルでは、CMAがCovariance Matrix Adaptationを表すCMA(ES)を紹介します。
CMA-ESは、非線形または連続的なドメイン最適化のためのランダム化、または進化戦略である。
我々は,連続探索アルゴリズムにおいて,非線形あるいは連続領域の要件から概念を導出しようと試みる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This tutorial introduces the CMA Evolution Strategy (ES), where CMA stands
for Covariance Matrix Adaptation. The CMA-ES is a stochastic, or randomized,
method for real-parameter (continuous domain) optimization of non-linear,
non-convex functions. We try to motivate and derive the algorithm from
intuitive concepts and from requirements of non-linear, non-convex search in
continuous domain.
- Abstract(参考訳): このチュートリアルではCMA Evolution Strategy (ES)を紹介し、CMAはCovariance Matrix Adaptationの略である。
CMA-ESは、非線形、非凸関数の実パラメータ(連続領域)最適化のための確率的、あるいはランダム化手法である。
我々は,直観的概念と連続領域における非線形,非凸探索の要件からアルゴリズムを動機付け,導出しようとする。
関連論文リスト
- A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
我々は,現代のディープラーニングにおいて広く普及している一般的なメタ学習問題に対処する。
これらの問題は、しばしばBi-Level Optimizations (BLO)として定式化される。
我々は,与えられたBLO問題を,内部損失関数が滑らかな分布となり,外損失が内部分布に対する期待損失となるようなii最適化に変換することにより,新たな視点を導入する。
論文 参考訳(メタデータ) (2024-10-14T12:10:06Z) - The Stochastic Conjugate Subgradient Algorithm For Kernel Support Vector Machines [1.738375118265695]
本稿では,カーネルサポートベクトルマシン(SVM)に特化して設計された革新的な手法を提案する。
イテレーション毎のイテレーションを高速化するだけでなく、従来のSFO技術と比較して収束度も向上する。
実験の結果,提案アルゴリズムはSFO法のスケーラビリティを維持できるだけでなく,潜在的に超越していることが示された。
論文 参考訳(メタデータ) (2024-07-30T17:03:19Z) - Natural Gradient Interpretation of Rank-One Update in CMA-ES [3.962636408554122]
我々は,CMA-ESにおけるランクワン更新の新しい解釈を,先行分布による自然勾配の観点から提案する。
我々は、平均ベクトルが進化経路の方向に存在すべきという考えに基づいて、事前分布を設定することにより、MAP-IGOフレームワークからのランクワン更新を導出する。
論文 参考訳(メタデータ) (2024-06-24T10:22:58Z) - Model-Agnostic Zeroth-Order Policy Optimization for Meta-Learning of Ergodic Linear Quadratic Regulators [13.343937277604892]
エルゴード線形二次規制器における不確実性と不均一性を扱うためにメタラーニングを用いることの問題点について検討する。
本稿では,不均一だが類似の線形力学系を学習するタスクに適用可能なポリシヘシアンの推定を省略するアルゴリズムを提案する。
メタオブジェクトの勾配の有界性と滑らかさを解析することにより、正確な勾配降下過程の収束結果を提供する。
論文 参考訳(メタデータ) (2024-05-27T17:26:36Z) - A Framework of Inertial Alternating Direction Method of Multipliers for
Non-Convex Non-Smooth Optimization [17.553531291690025]
非平滑なマルチブロック複合問題のクラスを解くために,iADMM(iADMM)と呼ばれるアルゴリズムフレームワークを提案する。
本フレームワークでは,従来のADMMスキームの収束解析を統一するために,変数の各ブロックを更新するために,ジェネラル・メイジャー・サロゲート化(MM)原理を用いる。
論文 参考訳(メタデータ) (2021-02-10T13:55:28Z) - Meta-Learning with Neural Tangent Kernels [58.06951624702086]
メタモデルのニューラルタンジェントカーネル(NTK)によって誘導される再生カーネルヒルベルト空間(RKHS)における最初のメタラーニングパラダイムを提案する。
このパラダイムでは,MAMLフレームワークのように,最適な反復内ループ適応を必要としない2つのメタ学習アルゴリズムを導入する。
本研究の目的は,1) 適応をRKHSの高速適応正則化器に置き換えること,2) NTK理論に基づいて解析的に適応を解くことである。
論文 参考訳(メタデータ) (2021-02-07T20:53:23Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
我々は、(離散時間)リアプノフ安定性理論が、必ずしも勾配ベースではない最適化アルゴリズムの分析(および潜在的な設計)において、いかに強力なツールとして役立つかを示す。
本稿では,不完全データベイズフレームワークにおけるパラメータ推定を,MAP-EM (maximum a reari expectation-maximization) と呼ばれる一般的な最適化アルゴリズムを用いて行うことに着目したML問題について述べる。
高速収束(線形あるいは二次的)が達成され,S&Cアプローチを使わずに発表することが困難であった可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-23T01:34:18Z) - The Hessian Estimation Evolution Strategy [3.756550107432323]
我々はヘッセン推定進化戦略と呼ばれる新しいブラックボックス最適化アルゴリズムを提案する。
アルゴリズムは、目的関数の曲率を直接推定することにより、サンプリング分布の共分散行列を更新する。
論文 参考訳(メタデータ) (2020-03-30T08:01:16Z) - Theoretical Convergence of Multi-Step Model-Agnostic Meta-Learning [63.64636047748605]
一般的なマルチステップMAMLアルゴリズムに対して収束保証を提供するための新しい理論フレームワークを開発する。
特に,本研究の結果は,収束を保証するためには,内部段階のステップを逆比例して$N$の内段ステップを選択する必要があることを示唆している。
論文 参考訳(メタデータ) (2020-02-18T19:17:54Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z) - On the Convergence of Adaptive Gradient Methods for Nonconvex Optimization [80.03647903934723]
我々は、勾配収束法を期待する適応勾配法を証明した。
解析では、非理解勾配境界の最適化において、より適応的な勾配法に光を当てた。
論文 参考訳(メタデータ) (2018-08-16T20:25:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。